THE Go-DICHOTOMY

ANTON BERNSHTEYN

ABSTRACT. In this note, we give a simple, graph-theoretic proof of the Kechris—Solecki-Todorcevic
Go-dichotomy. We then present some consequences of the Go-dichotomy in Borel combinatorics,
including the Luzin—Novikov and Feldman—Moore theorems. We also prove the injective version of
the Go-dichotomy for locally countable Borel graphs and show that it fails in general (i.e., without
the local countability assumption).

1. The Kechris—Solecki—-Todorcevic Gg-dichotomy

Let G be a graph on a Polish space. Recall that G is Borel (resp. analytic) if F(G) is a Borel
(resp. analytic) subset of the space [V (G)]?. The notation # ~¢ ¥ indicates that = and y are adjacent
vertices of G. A proper coloring of G is a function f defined on V(G) such that f(z) # f(y) whenever
r ~q y. Equivalently, f is a proper coloring if for every color a € im(f), the set f~!(a) € V(G) is
G-independent. The Borel chromatic number of G, denoted by xg(G), is the minimum cardinality
of a Polish space C' such that G admits a Borel proper coloring f: V(G) — C'. Note that xg(G) < Vg
if and only if V(G) can be covered by countably many G-independent Borel sets.

A homomorphism from a graph H to a graph G is a function f: V(H) — V(G) such that if
x ~g y, then f(z) ~g f(y), that is, f sends the edges of H to edges of G. Equivalently, f is a
homomorphism if the f-preimage of every G-independent set is H-independent. If H and G are
graphs on Polish spaces, then we write H —. G to indicate that there is a continuous homomorphism
from H to G. Note that if H —¢ G, then xg(G) > xg(H). In this note we shall establish the
following remarkable result of Kechris, Solecki, and Todorcevic, known as the Gy-dichotomy:

Theorem 1.1 (Kechris-Solecki-Todorcevic [KST99]). There exists a Borel graph Go such that for
every analytic graph G on a Polish space, precisely one of the following two alternatives holds:

e cither xg(G) < Vo;
e or Gg — G.

The graph Gg satisfying the conclusion of Theorem 1.1 has a simple explicit construction. Let
2% 1= J,,en 2" be the set of all finite sequences of zeroes and ones (including the empty sequence)
and let C := 2N denote the Cantor space. A set S € 2<% is dense if for all t € 2<%, there is s € S
extending ¢t. Given a set S € 2<%, let Gg denote the Borel (more precisely, F,) graph on € whose
edge set comprises all pairs of the form {s™i"z,s~¢ "z} with s € S, {i,7} = {0,1}, and x € C. Here
and in what follows, ~ denotes concatenation of sequences.

Theorem 1.2. Let G be an analytic graph on a Polish space and let S < 2<% be a set containing
exactly one sequence of each finite length (including the empty sequence). Then either xg(G) < Ng
or Gg —¢ G. If, in addition, S is dense, then these two possibilities are mutually exclusive.

Therefore, to obtain the conclusion of Theorem 1.1, we can set Gy := Gg for an arbitrary dense
set S € 2% that contains exactly one sequence of each finite length. (Such a set S exists by
Exercise 9.1.) In other words, Theorem 1.1 is an immediate consequence of Theorem 1.2.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
E-mail address: bahtoh@gatech.edu.
This work was partially supported by the NSF grant DMS-2045412.

1



The original proof of Theorem 1.2 due to Kechris, Solecki, and Todorcevic [KST99] used methods
of effective descriptive set theory. A classical proof was later discovered by Miller [Mil09]. The
proof we present here follows the outline sketched by Miller in [Mill12]. A prominent feature of this
argument is its reliance on graph-theoretic intuition.

2. The Borel chromatic number of Gg

The following proposition shows that the two alternatives in Theorem 1.2 are mutually exclusive
when S is dense.

Proposition 2.1. Suppose that S € 2<% is dense. Then every Baire-measurable Gg-independent
subset of € is meager. In particular, xg(Gg) > .

PROOF. Let I € C be a Baire-measurable Gg-independent set and suppose, toward a contradiction,
that I is nonmeager. By the Baire alternative, this implies that there is a nonempty open subset
U < € such that I is comeager in U. The topology on C is generated by the clopen sets of the form

Us = {xeC:scua}, wherese2~%,

(Here “s < z” means that s is an initial segment of z.) Thus, we may assume that U = U for some
s € 2<%, Furthermore, since S is dense, we may also assume that s € S.
Consider the mapping f: Us — Us defined by
f(s7i"y) == s7i"y forallie {0,1} and y € C,

where for i € {0, 1}, we write i := 1 — i. By definition,  ~g4 f(z) for all x € U, and thus, since I
is Gg-independent, we have I n f(I) = @. But f is a homeomorphism of U, which implies that
f(I)—and hence also I n f(I)—is comeager in Us. This contradiction completes the proof. |

It is easy to see that when S contains at most one sequence of each length, the graph Gg is acyclic
(Exercise 9.2). Therefore, taking S to be a dense set with this property, we obtain an example of an
acyclic locally countable Borel graph whose Borel chromatic number is uncountable.

3. Proof of Theorem 1.2

Let G be an analytic graph on a Polish space and let 7: E* — [V(G)]? be a continuous map from a
Polish space E* to the space [V (G)]? such that im(7) = E(G). For a finite graph H, a copy of H
in G is a mapping ¢ that assigns to each vertex u € V(H) a vertex ¢(u) € V(G) and to each edge
uv € E(H) an element p(uv) € E*, with the following compatibility property:

m(p(uv)) = p(u)p(v) for all uv e E(H).

(We tacitly assume that the sets V/(H) and E(H) are disjoint.) In particular, if ¢ is a copy of H in
G, then ¢V (H) is a homomorphism from H to G; but ¢ additionally selects a specific preimage in
E* for every edge of the form ¢(u)¢(v). The set of all copies of H in G is denoted by Hom(H, G).
Note that Hom(H, G) is a closed subset of the product space

V(G)VUD x (E#)BUD),
For a subset H < Hom(H, G) and a vertex u € V(H), let
H(u) = {pu) : pe H} < V(QG).
Note that if H is Borel, then the set H(u) is analytic. Similarly, for uv € E(H), let
H(uv) == {p(uww) : p€ H} = E*.

For each finite graph H, we define a certain o-ideal on Hom(H, G). Call a Borel subset H <
Hom(H, G) tiny if for some u € V(H), the set H(u) is G-independent. Call a subset (not necessarily
Borel) H < Hom(H, G) small if it can be covered by countably many tiny Borel sets; call 3 large if
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it is not small. By definition, small sets form a o-ideal. Note that if e denotes the graph with a
single vertex and no edges, then Hom(e, G) can be identified with V(G) in the obvious way, and a
set A € V(G) is small if and only if it can be covered by countably many G-independent Borel sets.
In particular, V(G) itself is small if and only if G has countable Borel chromatic number.

Let H be a finite graph and let w € V(H). Denote by H +, H the graph with vertex set
V(H) x {0,1} and edge set given by

(0,1) ~g4,0 (w,j) <= (i=jandv ~gw)or (i#jand v=w = u).

In other words, H +, H is obtained from two disjoint copies of H by adding an edge between their
corresponding copies of u. For ¢ € Hom(H +, H,G) and i € {0, 1}, define ¢* € Hom(H, G) by

gpi(v) = @((v,1)) for ve V(H);
gpi(vlvg) = p((v1,1)(ve, 1)) for vive € E(H).

For H < Hom(H,G) and u e V(H), let H +,, H denote the set of all copies ¢ of H +,, H in G such
that 9, ¢! € H. It is clear that if I is a Borel subset of Hom(H, &), then 3 +, K is a Borel subset
of Hom(H +, H,G). The key insight for the proof of Theorem 1.2 is given by following lemma.

Lemma 3.1. Let H be a finite graph and let u € V (H). Suppose that a Borel subset H < Hom(H, G)
is large. Then the set H +, H < Hom(H +, H, G) is also large.

ProOOF. First we observe that H +, H # @. Indeed, since H is large, hence not tiny, and Borel,
the set H(u) is not G-independent, i.e., there exist ¢g, ¢1 € H with pg(u) ~g v1(u), so we can pick
e € E* with 7(e) = ¢o(u)e1(u). Then the map ¢ € Hom(H +, H,G) with ¢° = ¢q, ¢! = ¢1, and
©((u,0)(u, 1)) = e belongs to H +,, H.

Now assume, toward a contradiction, that H +, H is small and hence it can be expressed as

©¢]
n=0
where each ), is a tiny Borel subset of Hom(H +, H,G). For every n € N, fix some v, € V(H) and
in € {0, 1} so that the set F,((vp,in)) is G-independent. By Exercise 9.4, there are G-independent
Borel sets I, 2 F,((vn,in)). Let

Hp = {peH : o(v,) € I,,}.

By definition, the (Borel) sets 3, are tiny. Therefore, the set H' := H\ |, H,, is large. Since H' is
Borel, we obtain H' +, H' # @. But H' +, H’ is disjoint from | J~_, Fp, which contradicts (3.2). W

For the next lemma, we fix compatible complete metrics d on V(G) and 6 on E*.

Lemma 3.3. Let H be a finite graph. Suppose that a Borel subset H < Hom(H, G) is large. Then
for any ¢ > 0, there is a large Borel subset H' < H such that:

e for allue V(H), diamg(H'(u)) < ¢;

o for all (u,v) € E(H), diams(H'(uwv)) < €.

PROOF. The desired conclusion follows since V(G) and E* can be covered by countably many
closed sets of diameter less than ¢ and small sets form a o-ideal. |

Now we are ready to prove Theorem 1.2. Assume that xg(G) > Xy (i.e., that V(G) is large) and
fix a set S < 2<% that contains a unique sequence of each finite length. Our goal is to show that
Gg —c GG. We shall obtain a desired continuous homomorphism from Gg to G as a “limit” of copies
in G of certain finite graphs. Specifically, for each n € N, let T}, be the tree on {0, 1}" whose edges are
of the form {s™i"t,s7i' "t} with s € S, {i,7'} = {0,1}, t € 2%, and length(s) +length(t) = n—1. For
n € N let s, denote the unique element of S of length n. Then we have Ty = e and 1,41 = T, +5, T},
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for all n € N. Using Lemmas 3.1 and 3.3 and the fact that V(G) is large, we recursively construct a
sequence of large Borel subsets T,, € Hom(T},, G) with the following properties:

o Tnt1 S Tn +s, Tns
e for all u € {0,1}", diamgy(T,(u)) <27™;
e for all uwv € E(T,,), diamgs(T, (uv)) <27,
The first property implies that for all i € {0, 1},
Tnt1(u™1) € Tp(u) for all we {0,1}" and T,y1(u"i,0v74) € Tp(u,v) for all wv € E(T,,).

For z € €, let f(x) be the unique point in (),~_, T, (z In), where z |n denotes the initial segment of =
of length n (which exists due to the completeness of the metric d). The map f: € — V(G) is clearly
continuous. It remains to check that it is a homomorphism from Gg to G. Take any edge zy € E(Gg).
Then there is unique ng € N with z(ng) # y(ng), and for all n > ng, we have zn ~p, yln. Let
e € E* be the unique point in ﬂf=no+1 Tn(zn,yn) (which exists by the completeness of §). Since

7 is continuous, we get 7(e) = f(z)f(y), i.e., f(x) ~g f(y), as desired.

4. The Luzin—Novikov theorem

Miller [Mil09; Mil12] observed that Theorem 1.1 can be used to derive a number of important results
in descriptive set theory. In this section, we give one such example: a simple combinatorial proof of
the Luzin—Novikov theorem. Let X and Y be sets and let A € X x Y. For x € X, the fiber of A
over = is the set A, :=={yeY : (z,y) € A}.

Theorem 4.1 (Luzin-Novikov). Let X and Y be Polish spaces and let A € X x Y be a Borel
subset. Suppose that for each © € X, the fiber A, is countable. Then there exists a countable
sequence of partial Borel functions f,: X — Y, n €N, such that for allt € X andye Y,

(r,y) € A < y = f,(x) for some n € N. (4.2)

PROOF. To construct the functions f;,,, we shall apply the Gg-dichotomy to an auxiliary graph.
For each = € X, let G be the graph with vertex set Y such that y; ~¢g, y2 if and only if y; # y2
and y1, y2 € Az. In other words, A, is a clique in G, while the vertices in Y\ 4, are isolated in G.
Since A, is countable, xg(G,) < Ng. Indeed, the following is a countable Borel coloring of G:

y ifye Ay
Y « ifyd A,

(Here * is an arbitrary value.) Now define a graph G with vertex set X x Y by putting edges between
the pairs of vertices of the form (z,y;) and (z,y2), where y1 ~g, y2. Combinatorially, G is a disjoint
union of the graphs G, taken over all x € X. Since A is Borel, G is Borel as well.

Claim 4.1.1. xg(G) < No.

> Suppose not. Then, by Theorem 1.2, there is a continuous homomorphism h: € - X x Y
from Gg to G, where S < 2<% is any dense set containing exactly one sequence of each finite
length. Let hy: € — X and hy: € — Y denote the first and the second coordinates of h, respectively.
Every connected component of G is contained in a set of the form {z} x Y for some x € X, which
implies that the function h; is constant on the connected components of Gg. But every connected
component of Gg is dense in € (Exercise 9.3), so, since h is continuous, it must be constant on all
of C. If x € X is the unique value taken by hy, then hs is a continuous homomorphism from Gg to
G,. This is impossible as xg(Gz) < No. <

Let ¢: X x Y — N be a Borel proper coloring of G. Then, for each n € N, we can define a Borel
partial function f,: X — Y by making f,(x) = y if and only if y € A, and ¢(z,y) = n. Property
(4.2) is immediate from the construction, so the proof is complete. |
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Corollary 4.3. If f: X — Y is a countable-to-one Borel function between Polish spaces X and Y,
then the set f(X) is Borel.

PROOF. Applying Theorem 4.1 to the set {(y,z) € Y x X : f(z) = y} yields a countable sequence
of partial Borel functions g,: Y — X, n € N, such that for all x € X and y € Y,

f(x) =y < x = g,(y) for some n € N.
Then f(X) = ;o dom(g,) is Borel, as desired. [

5. Locally finite graphs
The following is a nice graph-theoretic consequence of the Luzin—Novikov Theorem 4.1:
Theorem 5.1. If G is a locally finite Borel graph on a Polish space, then xg(G) < Ry.

PrROOF. Fix a countable base (U;)2,, for the topology on V(G). For each z € X, let

c(xz) == min{i e N : z € U;\Ng(U;)}.
Note that ¢(x) is well-defined since x has only finitely many neighbors. It is clear that ¢: V(G) —» N
is a proper coloring of G. It remains to argue that the function ¢ is Borel. To this end, we apply

Theorem 4.1 to the set {(x,y) € V(G) x V(G) : x ~g y} and get a countable sequence of partial
Borel functions f,: V(G) — V(G), n € N, such that for all z, y € V(G),

x ~qy < y= fn(x) for some n € N.
Then N¢(U;) = Uiy [, 1(U;) is Borel, and thus c is Borel as well. [

6. Edge-colorings and the Feldman—Moore theorem

A proper edge-coloring of a graph G is a function f defined on E(G) such that f(e) # f(h)
whenever distinct edges e and h share an endpoint. The Borel chromatic index of a graph G on
a Polish space, denoted by xg(G), is the minimum cardinality of a Polish space C such that G
admits a Borel proper edge-coloring f: E(G) — C. Note that in a proper edge-coloring, all the
edges incident to a given vertex must receive different colors. In particular, if x5(G) < N, then G
must be locally countable. Another useful and perhaps surprising consequence of the Luzin—-Novikov
Theorem 4.1 is a converse to this observation for Borel graphs.

Theorem 6.1 (Feldman-Moore). If G is Borel graph on a Polish space, then xg(G) < ¥y if and
only if G is locally countable.

PrROOF. We only need to argue that x5(G) < R for locally countable G. If G is locally countable,
then Theorem 4.1 applied to the set {(x,y) € V(G) x V(G) : z ~g y} yields a countable sequence
of partial Borel functions f,,: V(G) — V(G), n € N, such that for all z, y € V(G),

x~gy < y = fn(z) for some n € N,

For a pair of adjacent vertices x, y, let £(x,y) := min{n € N : y = f,,(x)} and define c: E(G) — [N]<2
by ¢(zy) = {{(z,y),£(y,z)}. Let H be the graph with vertex set F(G) in which two distinct edges
e, h of G are adjacent if and only if they share an endpoint and c¢(e) = ¢(h).

Claim 6.1.1. The graph H is locally finite. In fact, every vertex in H has at most 2 neighbors.

>  Let zy be an edge of G with ¢(x,y) = n and ¢(y,z) = m. Suppose xz € E(G) is another edge
such that c¢(zz) = c(zy) = {n,m}. Since f,(z) = y # z, we have {(z,2) # n, so it must be that
l(x,z) =m,ie., z= fpn(xr). Similarly, if yz is an edge with c(yz) = c(zy) = {n,m}, then z = f,(y).
Thus, the only possible neighbors of xy in H are = f,(x) and yf,(y). <

By Theorem 5.1, H has a Borel proper coloring ¢’: E(G) — N. Then the function E(G) —
[N]S2 x N: e — (c(e),c(e)) is a countable Borel edge-coloring of G, as desired. [
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7. Injective homomorphisms from G for locally countable graphs

Let G be a Borel graph on a Polish space with xg(G) > Ry. Theorem 1.1 then yields a continuous
homomorphism from Gg to G. It turns out that for locally countable graphs G, this homomorphism
can be made injective—so G has a subgraph isomorphic to Gg!

Theorem 7.1 (Kechris—Solecki-Todorcevic). Let G be a locally countable Borel graph on a Polish
space and let S < 2<% be a set containing exactly one sequence of each finite length. If xg(G) > Ro,
then there is an injective continuous homomorphism from Gg to G.

In the rest of this section, we prove Theorem 7.1. Fix a locally countable Borel graph G on a Polish
space. We shall use the notation and terminology from §3. In particular, we let 7: E* — [V(G)]?
be a continuous map from some Polish space E* to [V (G)]? such that im(7) = E(G). (Since G is
Borel, the map 7 may be assumed to be injective, but we will not make use of this fact.) We also fix
compatible complete metrics d on V(G) and 0 on E*.

By Theorem 6.1, we can fix a Borel proper edge-coloring ¢: E(G) — N. Given a finite graph H
and a proper edge-coloring £: F(H) — N, we say that a set H < Hom(H, G) is {-consistent if

c(m(p(e))) =&(e) forall pe H and e e E(H).

We say that H < Hom(H, G) is consistent if it is {-consistent for some &: E(H) — N. We also
say that H < Hom(H, G) is injective if the sets H(u), u € V(H), are pairwise disjoint. The main
ingredient in the proof of Theorem 7.1 is the following modification of Lemma 3.1:

Lemma 7.2. Let H be a connected finite graph and let 5 < Hom(H, G) be a large Borel consistent
injective set. Then for each u € V(H), there is a large Borel consistent injective subset H' < H 4, H.

PrROOF. We already know by Lemma 3.1 that the set H +, H is large. For each m € N, let H,,, be
the set of all p € H +,, I such that the color assigned by ¢ to the edge joining ¢((u,0)) and ¢((u, 1))
is m. Since small sets from a o-ideal, there is some m € N such that J,, is large. By construction,
H,, is consistent, so it remains to argue that there is a large Borel subset H' < H,, that is injective.

Claim 7.2.1. If p € Hyy,, then |V (H) is an injective function.

> Suppose @V (H) is not injective. Since H is injective, this implies that there must be a vertex
v e V(H) with ¢((v,0)) = ¢((v,1)). Take such a vertex v whose distance to v in H is minimum
and let z := ¢((v,0)) = ¢((v,1)). Let uw = vy, v1, ..., vy = v be a shortest uv-path in H. Note that
k = 1, since the vertices ¢((u,0)) and ¢((u, 1)) are adjacent in G and hence distinct. By the choice
of v, the vertices yo = ¢((vg—1,0)) and y1 = ¢((vg_1,1)) are distinct. But x is adjacent to both yg
and y1, and c(zyo) = c(zy1) = {(vgvg—1), where {: E(H) — N is an edge-coloring such that K is
&-consistent. This is impossible since c is a proper edge-coloring. <

Now let U be a countable base for the topology on V(G). By the above claim, for each ¢ € H,,,
it is possible to choose from U a neighborhood for every vertex of H 4+, H so that the closures of
these neighborhoods are disjoint. Since small sets from a o-ideal, it follows that there is a way to
assign to each vertex v € V(H +, H) a neighborhood U, € U so that the closures U, are pairwise
disjoint and the set

H ={peHn: pv)eU, forallve V(H +, H)}
is large. This set H' is as desired. |
Now we proceed exactly as we did in §3, but with Lemma 7.2 replacing Lemma 3.1. Namely,

assuming xg(G) > Np, we can use Lemmas 7.2 and 3.3 to recursively construct a sequence of large
Borel subsets T,, € Hom(T},, G) with the following properties:

® Jnt1 & Tn +s, {‘Tn;
e for all u € {0,1}", diamgy(T,(u)) <27™;



o for all wv € E(T},), diamgs (T, (uv)) <27
e cach T, is consistent and injective.
As in §3, we define a function f: € — V(G) by letting f(z) be the unique point in (),_y Tp (2 In).
Then f is a continuous homomorphism from Gg to G. Moreover, since each T, is injective, it is
straightforward to check that f is injective.

8. No injective homomorphisms from Gg in general

In their original paper [KST99], Kechris, Solecki, and Todorcevic asked whether there is an injective
continuous homomorphism from Gg to G for every (not necessarily locally countable) Borel graph
G with xg(G) > Ng, and conjectured that the answer is positive. This conjecture was refuted by
Lecomte [Lec07]. Here we describe an explicit counterexample. Say that a graph is K -free is it
does not contain an infinite clique. We will construct a graph G satisfying the following:

Theorem 8.1. There exists a Borel graph G on a Polish space such that xg(G) > R but xg(G’) < N
for every Borel Ky -free subgraph G’ of G.

Since Gy is Ky -free (in fact, it is acyclic—see Exercise 9.2), there is no injective Borel homomor-
phism from Gy to the graph G from Theorem 8.1, even though xg(G) > No.

For a Polish space X and a sequence f,: X — X, n € N, of Borel functions, let G((fn)r)
denote the graph induced by (fy,)7, i.e., the graph on X given by

T~a((f)r) Y = w#yand IneN(y = fu(z) or z = fu(y)).

Lemma 8.2. Let X be a Polish space. Suppose that a sequence f,: X — X, n € N, of continuous
open functions satisfies the following conditions:

(1) the set {xr € X : Yne NIm = n(f,(x) # x)} is dense;

(2) for each x € X, we have lim,_,o fn(x) = x.
Let G := G((fn)y_o). Then every Baire-measurable G-independent set is meager, hence xg(G) > No.
PROOF. Let A € X be a nonmeager Baire-measurable set. By the Baire alternative, A is comeager
in some nonempty open set U. Choose any x € U such that for all n € N, there is m > n with
fm(z) # x. Since lim, 4 fn(z) = x, there is n € N such that = # f,(x) € U, so we can pick an
open subset Uy < U containing z such that f,(Uy) < U and Uy n f,(Up) = @. Note that for all
y € Uy, we have y ~g fn(y). Since f, is continuous and open and A n Uy is nonmeager, f,(A n Up)

is also nonmeager. Since A is comeager in U, we have AN f,(AnUy) # @, i.e., for some y € An Uy,
fn(y) € A. This implies that A is not G-independent, as desired. |

Lemma 8.3. Let X be a Polish space. Suppose that a sequence f,: X — X, n € N, of Borel
functions satisfies the following condition:

(3) for alln e N and x € X with f,(x) # z, if m > n, then f,,(fm(x)) = fn(x).
Let G := G((fn)y_y). Then xg(G’") < Wy for every Borel Ky -free subgraph G’ of G.

PROOF. By refining the topology on X if necessary, we can make the functions (f, )y, continuous.
For a subgraph G’ € G, define a map cg: X — N U {0} by

cor(z) =inf{neN : z ~g fu(x)}.
By construction, cg/ () is a G'-independent set.

Claim 8.3.1. Let G' be a subgraph of G' and let ¢ := cg:. Suppose that x, y € X with x ~q y satisfy
c(x) = ¢(y) = n. Then n is finite and f,(z) = fn(y).

>  Assume that, say, y = f,(z) for some m € N. By the definition of ¢(x), m > n. Moreover,
x ~q fn(x), which implies f,,(x) # x. Therefore, f,(y) = fun(fm(x)) = fu(x). <
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Claim 8.3.2. Let G’ be an analytic subgraph of G with xg(G’) > . Then there exist a Borel subset
Y < X and a point © € X such that xg(G'[Y]) > Ng and x ~g y for allye Y.

> Curiously, the proof of this claim relies on the Go-dichotomy. Let ¢ := ¢¢r. For each n € Nu {0},
let X, := ¢ !(n). Then X = | | X,, is a partition of X into countably many Borel sets, and hence
there exists some n with xg(G'[X,]) > Rg. Note that n is finite since X, is G’-independent. By
Theorem 1.2, there is a continuous homomorphism h: € — X,, from Gg to G'[X,,], where S < 2<%
is any dense set containing exactly one sequence of each finite length. By Claim 8.3.1, the function
fn is constant on connected components of G'[X,,]. Therefore, f, o ¢ is constant on connected
components of Gg. Since every connected component of Gg is dense (Exercise 9.3) and f, o ¢ is
continuous, f,,o¢ is constant on €. In other words, there is z € X such that Gg —¢ G'[X,, n f, 1 (2)].
Setting Y := X, n f,, }(2) completes the proof of the claim. <

Suppose now that G’ is a Borel subgraph of G with xg(G’) > Ny. Repeated applications of
Claim 8.3.2 yield a sequence of points x,, n € N, such that x; ~¢ z; for all ¢ < j. In other words,
G’ contains an infinite complete subgraph, as desired. [

To prove Theorem 8.1, it remains to exhibit a Polish space X and a collection of continuous open
functions f,,: X — X that satisfy conditions (1)—(3) of Lemmas 8.2 and 8.3. A set-theoretic binary
tree is a nonempty set T € 2<% closed under taking initial segments. We identify a set-theoretic
binary tree T with the (graph-theoretic) rooted tree in which the vertices are the sequences in T,
the empty sequence & is the root, and the parent of a sequence ag...ag is ag...ar_1. Note that
each vertex s € T has at most two children, namely s~0 and s”1. When s70 (resp. s"1) is in T', we
call it the left (resp. right) child of s. We say that T is left-growing if every s € T has a left child
in T. Let X denote the space of all left-growing binary trees, equipped with the relative topology
inherited from 22°7. It is easy to see that X is closed in 22, hence it is a Polish space. For a
binary tree T, let s, (T) := max ({0, 1} n T), where the maximum is taken with respect to the usual
lexicographic ordering on finite binary sequences. Finally, for n € N, let f,,: X — X be given by

fo(T) == {teT: s,(T)"1 & t}.
In other words, f,,(T) is obtained from T by removing the right child of s, (T) and all its descendants

(if s,,(T) has no right child in T, then f,(T) = T). It is straightforward to verify that the functions
fn are as desired (Exercise 9.6).

9. Exercises

Exercise 9.1.
(a) Show that there is a dense set S < 2<% that contains exactly one sequence of each length.

(b) Let X be the space of sequences of the form (sy,);"_, where s, € {0,1}" for all n € N. Then
X =T_{0,1}" carries a product topology that turns it into a compact Polish space (homeomorphic
to the Cantor space). Let D be the set of all sequences (sy,)_, € X such that {s, : n € N} is dense.
Show that D is comeager in X (hence, in particular, D # ).

Exercise 9.2. Show that if S 2<% contains at most one sequence of each length, then the graph
Gg is acyclic.
Exercise 9.3.

(a) Suppose S < 2<% contains at least one sequence of each length. Show that vertices z, y € C
are joined by a path in Gg is and only if the set {i € N : x; # y;} is finite.

(b) Conclude that if S < 2<% contains at least one sequence of each length, then every connected
component of Gg is dense in C.

Exercise 9.4. Let G be an analytic graph on a Polish space. Suppose that I < V(G) is an analytic
G-independent set. Show that there is a Borel G-independent set J < V(G) such that J 2 1.
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Exercise 9.5. Let G be a locally countable Borel graph on a Polish space. Show that the function
degq: V(G) — N u {oo} is Borel.

Exercise 9.6. Verify that the functions f,: X — X, n € N, constructed in §8 are continuous and
open and satisfy conditions (1)—(3) of Lemmas 8.2 and 8.3.
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