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1. Fields
1.A. A problem to think about

Linear algebra, by and large, is concerned with systems of linear equations of the form
a1x1 ` ¨ ¨ ¨ ` anxn “ b.

Ponder the following two questions:
(Q1) Where do the coefficients a1, . . . , an, b and the variables x1, . . . , xn come from?
(Q2) How many equations and variables can such a system include? Can there be infinitely many?

Most introductory linear algebra courses answer (Q1) by requiring the coefficients and the variables
to be real numbers, and (Q2) by prohibiting infinite systems. However, it turns out that a lot of
linear-algebraic techniques can be used in a much broader context, as we will soon discover.

The following problem gives an example of a situation when there are infinitely many variables
and equations:

Problem 1.1. Let a1, . . . , an be distinct integers and suppose that f : ZÑ R is a function such
that for all k P Z and ` P Z`, we have

fpk ` a1`q ` fpk ` a2`q ` ¨ ¨ ¨ ` fpk ` an`q “ 0. (1.2)
Must it be that fpmq “ 0 for all m P Z?

We can think of the values fpmq, m P Z, as real variables indexed by the integers. Then (1.2) is
a homogeneous linear equation in these variables, and what Problem 1.1 is asking is whether the
infinite system formed by these equations has a nontrivial solution. Here is how one can go about
answering this question for a specific choice of a1, . . . , an:

Example 1.3. Suppose that n “ 3 and a1 “ 0, a2 “ 1, a3 “ 2. Then fpmq “ 0 for all m P Z, as
the following calculation shows:

fpmq “
2
3 ¨ pfpmq ` fpm` 1q ` fpm` 2qq

looooooooooooooooooomooooooooooooooooooon

k“m, `“ 1

´
2
3 ¨ pfpm` 1q ` fpm` 2q ` fpm` 3qq

loooooooooooooooooooooomoooooooooooooooooooooon

k“m`1, `“ 1

`
1
3 ¨ pfpm` 3q ` fpm` 4q ` fpm` 5qq

loooooooooooooooooooooomoooooooooooooooooooooon

k“m`3, `“ 1

´
1
3 ¨ pfpm` 4q ` fpm` 5q ` fpm` 6qq

loooooooooooooooooooooomoooooooooooooooooooooon

k“m`4, `“ 1

`
1
3 ¨ pfpmq ` fpm` 3q ` fpm` 6qq

looooooooooooooooooomooooooooooooooooooon

k“m, `“ 3

“ 0. (1.4)

In principle, we might hope to combine different instances of (1.2) in a manner similar to (1.4) to
obtain the equality fpmq “ 0. However, doing this explicitly for arbitrary a1, . . . , an is tricky. We
will eventually be able to sidestep this difficulty and solve Problem 1.1 almost effortlessly. To really
appreciate the power of the general theory that we will develop, the reader is encouraged to try
their hand on some concrete instances of Problem 1.1, such as the following:

Exercise 1.5. Solve Problem 1.1 for n “ 3 and a1 “ 0, a2 “ 1, a3 “ 3.

1.B. Groups, rings, fields
For now we will focus on question (Q1). It is clear that for a linear equation

a1x1 ` ¨ ¨ ¨ ` anxn “ b

to make sense, there has to be a way to multiply and add entities such as the ai’s and the xi’s. For
instance, the ai’s and the xi’s might be real numbers. But they could also be complex numbers, or
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rational numbers, or even integers. (The problem of finding integer solutions to linear equations
is part of the subject called integer programming, which has numerous applications in computer
science.) It turns out that linear algebra works best when the coefficients and the variables are
elements of an algebraic structure called a field.

To define fields, we will need a brief recap of some basic notions from abstract algebra. The reader
should be warned: The rest of this subsection is a tiresome journey through a sea of boring-sounding
terms and technical definitions, but, trust me, this evil is a necessary one, and soon enough we will
reap the bountiful fruits of our labors.

A binary operation on a set S is a map
‹ : S ˆ S Ñ S.

In other words, ‹ takes an (ordered) pair of elements of S as an input and outputs a single element
of S. It is customary to write a ‹ b instead of ‹pa, bq (for instance, we write a` b instead of `pa, bq).
A binary operation ‹ is associative if for all a, b, c P S, we have

pa ‹ bq ‹ c “ a ‹ pb ‹ cq.

Associativity of ‹ means that it makes sense to write a ‹ b ‹ c, since the placement of parentheses,
doesn’t affect the outcome. This observation generalizes to more than three elements:

Exercise 1.6. Show that if ‹ is an associative binary operation on a set S, then for all a1, . . . ,
an P S, the value a1 ‹ a2 ‹ ¨ ¨ ¨ ‹ an is well-defined and independent of the placement of parentheses.

A binary operation ‹ on a set S is commutative if for all a, b P S, we have
a ‹ b “ b ‹ a.

An element e P S is an identity of ‹ if for all a P S,
a ‹ e “ e ‹ a “ a.

Lemma 1.7. If ‹ is a binary operation with identity, then the identity of ‹ is unique.

Proof. If e, e1 are identities of ‹, then
e “ e ‹ e1 “ e1. �

Let ‹ be a binary operation on a set S and let e be an identity of ‹. An inverse of a P S is an
element b P S such that

a ‹ b “ b ‹ a “ e.

One might hope that, by analogy with Lemma 1.7, every element a P S can have at most one inverse.
Unfortunately, this hope is false in general:

Exercise 1.8. Give an example of a binary operation ‹ with identity for which there is an element
with more than one inverse.

Nevertheless, if ‹ is associative, then inverses are unique:

Lemma 1.9. If ‹ is an associative binary operation with identity e, then every element has at most
one inverse with respect to ‹.

Proof. Suppose that b and b1 are both inverses of a. Then
b “ b ‹ e “ b ‹ pa ‹ b1q “ pb ‹ aq ‹ b1 “ e ‹ b1 “ b1. �

The next definition identifies what can perhaps be called the most important class of algebraic
structures:

Definition 1.10. A group is a set G equipped with an associative binary operation ‹ such that ‹
has an identity e and every element g P G has an inverse.
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A group pG, ‹q is called commutative, or Abelian, if the operation ‹ is commutative.

Example 1.11. pR,`q is an Abelian group. The identity of this group is 0, and the inverse of an
element a P R is p´aq.

Example 1.12. pR, ¨q is not a group. The multiplication operation is associative and commutative;
it also has an identity, namely the number 1. But the element 0 has no inverse.

Exercise 1.13. Is pRzt0u, ¨q an Abelian group?

Now we define a class of structures with two operations that resemble the usual addition and
multiplication:

Definition 1.14. A ring is a set R equipped with a pair of binary operations ` and ¨, called
addition and multiplication respectively, such that:
(R1) pR,`q is an Abelian group, whose identity is denoted 0;
(R2) multiplication is an associative operation with identity, which is denoted 1;
(R3) for all a, b, c P R, we have

a ¨ pb` cq “ pa ¨ bq ` pa ¨ cq and pa` bq ¨ c “ pa ¨ cq ` pb ¨ cq.

A ring pR,`, ¨q is called commutative if ¨ is a commutative operation.1

Example 1.15. pR,`, ¨q and pZ,`, ¨q (where ` and ¨ are the usual addition and multiplication)
are commutative rings.

Example 1.16. LetMnˆnpRq denote the set of all n-by-n matrices with real entries. ThenMnˆnpRq
is a ring under the usual operations of matrix addition and multiplication, but when n ě 2, this
ring is not commutative. For instance, for n “ 2, we have

„

1 0
1 1



¨

„

1 1
0 1



“

„

1 1
1 2



‰

„

2 1
1 1



“

„

1 1
0 1



¨

„

1 0
1 1



.

Exercise 1.17 (important). Show that in any ring R, the following identities hold for all a, b P R:
a ¨ 0 “ 0 ¨ a “ 0;

a ¨ p´bq “ p´aq ¨ b “ ´pa ¨ bq.

Finally, we can define fields, which are particularly nice rings:

Definition 1.18. A field is a commutative ring F in which 0 ‰ 1 and every element a P F zt0u has
a multiplicative inverse.

Exercise 1.19. Why is it necessary to require 0 ‰ 1 in the definition of a field?

1.C. Examples of fields
Example 1.20. R, C, and Q, equipped with the usual addition and multiplication operations, are
fields. On the other hand, Z is a commutative ring but not a field, since some elements (actually,
all nonzero elements apart from 1 and ´1) have no multiplicative inverses. The set of nonnegative
integers N is not even a ring, since most elements of N have no additive inverses.

Example 1.21. Consider the set
Qpiq :“ ta` bi : a, b P Qu Ă C.

We claim that Qpiq is a field under the usual addition and multiplication operations; in other words,
Qpiq is a subfield of C. First, we have to show that Qpiq is closed under addition and multiplication;

1Because ` is commutative by definition.
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i.e., if x, y P Qpiq, then x` y, xy P Qpiq as well. For addition, this is almost trivial (exercise!), while
for multiplication, we have

pa` biqpc` diq “ pac´ bdq ` pad` bcqi,

and if a, b, c, and d are rational, then so are pac´ bdq and pad` bcq. Now it is fairly easy to see
that Qpiq is a ring (another exercise!), so it remains to verify that every nonzero element of Qpiq
has a multiplicative inverse in Qpiq. But

1
a` bi

“
a

a2 ` b2 `
´b

a2 ` b2 i,

and if a, b P Q, then a{pa2 ` b2q, ´b{pa2 ` b2q P Q as well.

Exercise 1.22. Let n be a positive integer and define
Qp
?
nq :“ ta` b

?
n : a, b P Qu Ă R.

Prove that Qp
?
nq is a subfield of R.

Example 1.23. A complex number a P C is algebraic if there is a nonzero polynomial ppxq with
rational coefficients such that ppaq “ 0. Some examples of algebraic numbers are:

‚ rational numbers (if a P Q, then it is a root of the polynomial x´a with rational coefficients);
‚
?

2, which is a root of x2 ´ 2;
‚ the imaginary unit i, which is a root of x2 ` 1;
‚

3
?

5, which is a root of x3 ´ 5;
‚ the golden ratio p1`

?
5q{2, which is a root of x2 ´ x´ 1;

‚ the five complex roots of x5 ´ 4x` 2;
‚ &tc.

Exercise 1.24. Show that every element of Qpiq is algebraic. (See Example 1.21 for the definition
of Qpiq.) Show that if n is a positive integer, then every element of Qp

?
nq is algebraic. (See

Exercise 1.22 for the definition of Qp
?
nq.)

Some numbers that are not algebraic are π “ 3.1415 . . . and e “ 2.7182 . . ..2 Denote the set of all
algebraic numbers by Q. Then Q is a subset of C. It turns out that Q is a field:

Theorem 1.25. Q is a subfield of C.

Note that this theorem is far from obvious, because it is not clear from the definition that Q is
closed under addition and multiplication:

Exercise 1.26 (hard). Suppose that a is a root of x5 ´ 4x ` 2 and b is a root of 2x5 ´ 5x4 ` 5.
Find a nonzero polynomial ppxq with rational coefficients such that ppa` bq “ 0.

We will prove Theorem 1.25 later on, when we have enough machinery to attack it efficiently.

1.D. Finite fields
By definition, every field must contain at least two distinct elements, namely 0 and 1. It turns out,
there is a field with only two elements. Namely, let F2 :“ t0, 1u and define ` and ¨ on F2 as follows:

` 0 1
0 0 1
1 1 0

¨ 0 1
0 0 0
1 0 1

2The fact that e is not algebraic was first established by Charles Hermite in 1873, while the non-algebraicity of π
was proved in 1882 by Ferdinand von Lindemann.
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It is not hard to check that these two operations turn F2 into a field.
More generally, let n be an integer ě 2. Let Zn be the set t0, 1, . . . , n´1u, equipped with addition

and multiplication modulo n. In other words, to add/multiply two elements a, b P Zn, we first
add/multiply them as integers and then compute the remainder of the result after division by n.
For instance, 2` 2 “ 1 in Z3, because, if we add 2 and 2 as integers, we get 4, and the remainder of
4 after division by 3 is 1. We usually write 2` 2 “ 1 pmod 3q to emphasize that the operation is
performed in Z3 instead of Z.

Exercise 1.27 (tedious but straightforward). Show that Zn is a commutative ring.

Theorem 1.28. Let n be an integer ě 2. Zn is a field if and only if n is a prime number.

Proof. First, suppose that n is not prime. To show that Zn is not a field, we will use the following
lemma:

Lemma 1.29. If F is a field and a, b are nonzero elements of F , then ab ‰ 0.

Proof. Assume, towards a contradiction, that a, b are nonzero elements such that ab “ 0. Since
a ‰ 0 and F is a field, a has a multiplicative inverse a´1. Then

b “ 1 ¨ b “ pa´1aqb “ a´1pabq “ a´1 ¨ 0 “ 0,
where the last equality is due to Exercise 1.17. %

If n is not a prime number, then n “ k` for some integers 2 ď k, ` ă n. Then k, ` are nonzero in
Zn, yet k` “ n “ 0 pmod nq. In other words, Zn contradicts Lemma 1.29, and thus it is not a field.

Now suppose that n is a prime number. Since we already know that Zn is a commutative ring,
and it is clear that 0 ‰ 1 pmod nq, we only need to show that every nonzero element of Zn has a
multiplicative inverse. To that end, take any a P Znzt0u. We need to find some b P Zn such that
ab “ 1 pmod nq. Consider the following function:

fa : Zn Ñ Zn : b ÞÑ ab.

We claim that fa is injective, i.e., if fapb1q “ fapb2q, then b1 “ b2. Indeed, fapb1q “ fapb2q means
that ab1 “ ab2 in Zn, i.e., apb1´ b2q is divisible by n. Since n is a prime number and a ‰ 0 pmod nq,
it must be that pb1 ´ b2q is divisible by n. In other words, b1 ´ b2 “ 0 pmod nq, or, equivalently,
b1 “ b2 pmod nq, as claimed. The set Zn is finite, so if the map fa : Zn Ñ Zn is injective, then it
must also be surjective, i.e., for every c P Zn there is some b P Zn such that fapbq “ c. Taking c “ 1,
we obtain b P Zn such that ab “ fapbq “ c “ 1, as desired. Therefore, every nonzero element of Zn
has a multiplicative inverse, and so Zn is indeed a field. �

Remark. There are other ways to show that Zn is a field when n is prime. A very general approach
involves the so-called Euclidean algorithm. We will discuss it later on in the context of polynomial
division.

For a prime number p, we write Fp instead of Zp to emphasize that it is a field. (Another common
notation for this field is GF ppq, standing for “the Galois field of order p.”)

Exercise 1.30. Suppose that p is a prime number and F is a finite field of size p. Show that F is
isomorphic to Fp.

There exist other finite fields. In fact, the following is true:

Theorem 1.31. Let n be an integer ě 2. There exists a finite field of size n if and only if n is a
power of a prime number, in which case all the fields of size n are isomorphic to each other.

If q is a prime power, then the unique (up to isomorphism) field of size q is denoted Fq (or GF pqq).
Note that unless q is itself prime, Fq is not the same as Zq. We will not prove Theorem 1.31 in these
notes.
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1.E. Matrices over rings
Matrices are very important objects in linear algebra. Let R be a ring (not necessarily commutative).
An m-by-n matrix over R is a rectangular array of elements of R indexed by the pairs pi, jq with
1 ď i ď m, 1 ď j ď n. For a matrix A, we write Api, jq for the entry of A in the position pi, jq.3,4

Thus, a typical m-by-n matrix A looks like this:

A “

»

—

—

—

–

Ap1, 1q Ap1, 2q ¨ ¨ ¨ Ap1, nq
Ap2, 1q Ap2, 2q ¨ ¨ ¨ Ap2, nq

...
... . . . ...

Apm, 1q Apm, 2q ¨ ¨ ¨ Apm,nq

fi

ffi

ffi

ffi

fl

.

The set of all m-by-n matrices over R is denoted by MmˆnpRq. For a pair of matrices A, B P

MmˆnpRq, their sum A`B PMmˆnpRq is the matrix given by

pA`Bqpi, jq :“ Api, jq `Bpi, jq (1.32)

for all 1 ď i ď m, 1 ď j ď m. Note that “`” on the right-hand side of (1.32) indicates the addition
operation in the ring R.

Exercise 1.33. Show that pMmˆnpRq,`q is an Abelian group.

To define matrix multiplication, we first need a convenient piece of notation. Let I be a finite
set, say of size n, and let paiqiPI be a sequence of elements of R indexed by I. Choose an arbitrary
ordering i1, . . . , in of I and define

ÿ

iPI

ai :“ ai1 ` ¨ ¨ ¨ ` ain . (1.34)

The expression on the right-hand side of (1.34) makes sense (because the addition in R is associative,
see Exercise 1.6) and, crucially, its value is independent of the particular ordering i1, . . . , in (because
addition is commutative), so (1.34) is a valid definition. If I “ ∅, then, by convention,

ř

iP∅ ai :“ 0.
When I “ t1, . . . , nu for some n P N, we also use the notation

řn
i“1 ai :“

ř

iPt1,...,nu ai.
Now let A PMmˆnpRq and B PMnˆrpRq. Note that we require the number of columns of A to

match the number of rows of B. The product of A and B is the m-by-r matrix AB P MmˆrpRq
given by

pABqpi, jq :“
n
ÿ

k“1
Api, kqBpk, jq (1.35)

for all 1 ď i ď m, 1 ď j ď r. Again, note that the addition and multiplication on the right-hand
side of (1.35) are the corresponding operations in the ring R.

Exercise 1.36. Let A PMmˆnpRq, B PMnˆrpRq, and C PMrˆspRq. Show that pABqC “ ApBCq.

While Exercise 1.36 can be solved by a direct calculation, we will eventually establish a conceptual
reason for the equality pABqC “ ApBCq as well as for the specific way matrix multiplication is
defined.

By definition, the set MnˆnpRq of all n-by-n matrices is closed under matrix addition and
multiplication. Furthermore, these operations, restricted to MnˆnpRq, have identities: The additive
identity is the zero matrix, i.e., the n-by-nmatrix all of whose entries are zero; while the multiplicative

3If you wish to be pedantic, you could say that anm-by-nmatrix overR is a function A : t1, . . . ,muˆt1, . . . , nu Ñ R.
4Actually, if you wish to be even more pedantic, you should note that the definition in 3 doesn’t quite work, since

it identifies the (unique) m-by-0 matrix with the (unique) n-by-0 matrix, even if m ‰ n, which breaks down the rules
of matrix multiplication.
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identity is the identity matrix InpRq (or simply In if the ring R is understood from the context),
which looks like this:

In :“

»

—

—

—

–

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

... . . . ...
0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

fl

.

In other words,

Inpi, jq “

#

1 if i “ j;
0 if i ‰ j.

In fact, MnˆnpRq is a ring:

Exercise 1.37. Show that MnˆnpRq is a ring under the matrix addition and multiplication.

Another useful matrix operation is transposition. The transpose of a matrix A P MmˆnpRq is
the matrix AJ PMnˆnpRq given by AJpi, jq :“ Apj, iq for all 1 ď i ď n, 1 ď j ď m.

Exercise 1.38. Let A PMmˆnpRq and B PMnˆrpRq. Prove that pAJqJ “ A and if R is commuta-
tive, then pABqJ “ BJAJ.

1.F. An application of linear algebra over an unusual field
One of the results that we will prove is that for any field F , there is a way to assign to each matrix
A over F a natural number rankpAq, called the rank of A, with the following properties:

(r1) rankpInq “ n for all n P N;
(r2) if A PMmˆnpF q, then rankpAq ď mintm,nu;
(r3) if A PMmˆnpF q and B PMnˆrpF q, then rankpABq ď mintrankpAq, rankpBqu.

The reader is probably familiar with at least some of these properties in the case of matrices with
real entries; what makes this result particularly striking is that the same holds for matrices over an
arbitrary field. The proof of the next theorem shows the power of a judicious choice of a field:

Theorem 1.39 (Babai–Frankl?). Let n, m be positive integers and suppose that S1, . . . , Sm are
subsets of the set t1, . . . , nu such that:

‚ for each i, the size of Si is odd;
‚ for all distinct i, j, the size of the intersection Si X Sj is even.

Then m ď n.

Two quick remarks before we start the proof: First, there are exponentially many (2n´1, to be
precise) distinct subsets of t1, . . . , nu of odd size, and it is remarkable how drastically this number
decreases when we add the requirement that the pairwise intersections of the sets must be even.
Second, the bound m ď n is sharp, since the n sets t1u, t2u, . . . , tnu all have odd size (namely 1)
while their pairwise intersections have even size (namely 0).

Proof. Form an m-by-n matrix A according to the formula

Api, jq :“
#

1 if j P Si;
0 if j R Si.

(1.40)

We view A as a matrix over the field F2. Consider the matrix B :“ AAJ (where the matrix
multiplication is performed over F2). Then B is an m-by-m matrix and, by definition,

Bpi, jq “
n
ÿ

k“1
Api, kqApj, kq.
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The product Api, kqApj, kq is either 0 or 1, and it is equal to 1 only if Api, kq “ Apj, kq “ 1. By
(1.40), we have Api, kq “ Apj, kq “ 1 if and only if k P Si X Sj . Therefore,

Bpi, jq “
ÿ

kPSiXSj

1 “ |Si X Sj | pmod 2q.

(Addition is performed modulo 2, since we are working in F2.) By the assumptions of the theorem,

|Si X Sj | is
#

odd if i “ j;
even if i ‰ j.

Hence,

Bpi, jq “

#

1 if i “ j;
0 if i ‰ j;

in other words, B is the identity matrix Im. And now we are done, since

m
(r1)
“ rankpImq “ rankpBq “ rankpAAJq

(r3)
ď rankpAq

(r2)
ď n. �

The proof of Theorem 1.39 given above uses only a minimum amount of linear algebra, and all
the missing details can be filled in quite easily. For matrices over F2, the rank of an m-by-n matrix
A PMmˆnpF2q can be defined by

rankpAq :“ log2 |tAx : x PMnˆ1pF2qu|. (1.41)
It is fairly straightforward to check that this definition fulfills conditions (r1), (r2), and (r3). For
instance, note that if A PMmˆnpF2q, then tAx : x PMnˆ1pF2qu ĎMmˆ1pF2q, so

rankpAq “ log2 |tAx : x PMnˆ1pF2qu| ď log2 |Mmˆ1pF2q| “ m.

On the other hand, the number of m-by-1 matrices that can be expressed in the form Ax with
x PMnˆ1pF2q cannot exceed the number of different choices for x, and so

rankpAq “ log2 |tAx : x PMnˆ1pF2qu| ď log2 |Mnˆ1pF2q| “ n.

This proves (r2).

Exercise 1.42. Verify that the notion of rank given by (1.41) satisfies (r1) and (r3).

A definition similar to (1.41) works over any finite field. We will show that even over an infinite
field, there is a way to perform analogous “counting” arguments. Another difficulty that we will
tackle is finding simple ways for computing or estimating the rank of a given matrix.

Extra exercises for Section 1
Exercise 1.43. An integral domain is a commutative ring R in which 0 ‰ 1 and for all a, b P Rzt0u,
we have ab ‰ 0. By Lemma 1.29, every field is an integral domain.

(a) Give an example of an integral domain that is not a field.
(b) Prove that every finite integral domain is a field.

Exercise 1.44 (Characterist ic). Let F be a field. For n P N and a P F , define
n ¨ a :“ a` a` ¨ ¨ ¨ ` a

loooooooomoooooooon

n summands

.

The characteristic of a field F is the natural number charpF q that is equal to the smallest positive
integer n satisfying n ¨ 1 “ 0 if such n exists, and 0 otherwise. Show that if charpF q ą 0, then
charpF q is a prime number.

Exercise 1.45. We say that a field K contains a copy of a field F if K has a subfield that is
isomorphic to F . Let K be a field.
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(a) Show that if charpKq “ 0, then K contains a copy of Q.
(b) Show that if charpKq “ p ą 0, then K contains a copy of Fp.

2. Vector spaces
2.A. The definition of a vector space

A central notion in linear algebra is that of a vector space. It is an abstract concept that captures
the properties of sets of solutions to systems of homogeneous linear equations.

Definition 2.1. A vector space over a field F (also called an F -vector space) is a set V , whose
elements are referred to as vectors, equipped with a binary operation `, called (vector) addition,
and a function ¨ : F ˆ V Ñ V , called scalar multiplication, or scaling, such that:
(V1) pV,`q is an Abelian group;
(V2) for all a, b P F and v P V , pabq ¨ v “ a ¨ pb ¨ vq;
(V3) for all a, b P F and v P V , pa` bq ¨ v “ pa ¨ vq ` pb ¨ vq;
(V4) for all a P F and v, w P V , a ¨ pv ` wq “ pa ¨ vq ` pa ¨ wq;
(V5) for all v P V , 1 ¨ v “ v.

A vector space is an object that is heavily laden with operations (and the fact that many of them
share a name makes things even more confusing!). If V is a vector space over a field F , then the
following operations are around:

‚ the field addition on F , denoted `;
‚ the vector addition on V , also denoted `;5
‚ the field multiplication on F , denoted ¨ or by juxtaposition; and
‚ the scalar multiplication, which allows one to multiply a vector v P V by a field element
a P F , and is also denoted ¨ or by juxtaposition.

These operations bring in with them some extra notation:
‚ the additive identity in F , denoted 0;
‚ the additive identity in V , also denoted 0;6
‚ the additive inverse of an element a P F , denoted ´a;
‚ the additive inverse of an element v P V , denoted ´v;7
‚ the multiplicative identity in F , denoted 1;
‚ the multiplicative inverse of a nonzero element a P F , denoted a´1 or 1{a.

It is very important to keep in mind, however, that scalar multiplication is not a binary operation
on V , so there is no such thing as a “multiplicative identity in V .”

Exercise 2.2. Let V be a vector space over a field F . Show that for all a P F and v P V ,
0F ¨ v “ a ¨ 0V “ 0V and p´1q ¨ v “ ´v.

(Cf. Exercise 1.17.)

The definition of a vector space is a true Goliath. Thankfully, with few examples in hand, one
very rarely actually needs to apply it directly.8

5To make it absolutely clear which ` is meant, people sometimes write things like `F and `V , but only occasionally.
6You can, of course, clarify the matters by writing something like 0F and 0V . Also, people sometimes use boldface

zero: 0, or a zero with an arrow: ~0, for the additive identity in V , but both these symbols are uncommon.
7One might think that there is no way to confuse the notation for the additive inverses in F and in V since the

first one applies to the elements of the field F and the second one to the elements of the vector space V . However,
nothing prevents an object x to be both an element of F and of V and to have different additive inverses there. Then,
the expression “´x” is ambiguous.

8If you’ve seen one vector space, you’ve seen them all!
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Example 2.3. This is the prototypical example of a vector space. Let F be any field and consider
the set Fn of all n-tuples of the elements of F . We can add and scale them as follows:

px1, . . . , xnq ` py1, . . . , ynq :“ px1 ` y1, . . . , xn ` ynq;
a ¨ px1, . . . , xnq :“ pax1, . . . , axnq.

It is easy to check that these definitions give Fn the structure of an F -vector space. (Most of the
required properties follow simply because F is a field.)

px1, x2q

py1, y2q

px1 ` y1, x2 ` y2q

Figure 1. Vector addition in R2.

Example 2.4. The set MmˆnpF q of m-by-n matrices over a field F is a vector space over F under
matrix addition and entry-wise scaling: pa ¨Aqpi, jq :“ apApi, jqq. This is a special case of Example
2.3, since an m-by-n matrix can be viewed as a tuple of elements of F of length mn, and thus, as a
vector space over F , MmˆnpF q is essentially the same as Fmn.
Example 2.5. Let F be a field. Then F is already equipped with addition and multiplication, and
these operations make F a vector space over itself. (This is a special case of Example 2.3, since
F can be identified with F 1.) More generally, suppose that F is a subfield of a field K. Then the
elements of K can be added to each other and multiplied by the elements of F , making K a vector
space over F . Thus, for example, C is a vector space over R and R is a vector space over Q. Note
that R is at the same time also a vector space over R—it is important to remember which field you
are working over.
Example 2.6. A vector space must contain at least one element, namely its additive identity, and
it is possible to construct a vector space with only one element. To that end, consider a one-element
set t0u, whose only element is denoted 0. We can equip t0u with the structure of a vector space
over any given field F by setting 0` 0 :“ 0 and a ¨ 0 :“ 0 for all a P F . It is trivial to check that
this is indeed a vector space. (It is sometimes convenient to think that this is also a special case of
Example 2.3 with n “ 0.)
Example 2.7. Let F be a field and let FN denote the set of all infinite sequences px0, x1, . . .q of
elements of F . By analogy with Example 2.3, define

px0, x1, . . .q ` py0, y1, . . .q :“ px0 ` y0, x1 ` y1, . . .q;
a ¨ px0, x1, . . .q :“ pax0, ax1, . . .q.

This makes FN a vector space over F .
Example 2.8. This example is a common generalization of Examples 2.3 and 2.7. Let F be a field
and let X be an arbitrary set. The set FX of all functions from X to F is an F -vector space under
the operations of pointwise addition and multiplication. That is, for each f , g P FX , we let f ` g
be the function such that for all x P X,

pf ` gqpxq :“ fpxq ` gpxq.

Similarly, for each f P FX and a P F , we let a ¨ f be the function given by
pa ¨ fqpxq :“ apfpxqq.

Example 2.3 is the special case of this construction forX “ t1, . . . , nu, while Example 2.7 corresponds
to the case X “ N.
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Example 2.9. For a set X, let PpXq denote the powerset of X, i.e., the set of all subsets of X.
We equip PpXq with the addition given by

A`B :“ A4B,

where 4 is the symmetric difference operation.9 Also, let 0 ¨A :“ ∅ and 1 ¨A :“ A for all A P PpXq.
These operations make PpXq a vector space over F2. The easiest way to see this is as follows:
Exercise 2.10. Show that the F2-vector space PpXq is isomorphic to FX2 .

2.B. Subspaces
Let V be an F -vector space. When is a subset W Ď V a subspace of V , i.e., a vector space in its
own right under the operations inherited from V ? First of all, W must be nonempty (recall that a
vector space can’t be empty—it must have an additive identity). Second, W must be closed under
the vector space operations; that is, for all x, y PW and a P F , the elements x` y and a ¨ x must
be in W as well. Additionally, W must satisfy the axioms for being a vector space—but, as the
following very useful lemma asserts, we get the vector space axioms for free:
Lemma 2.11. Let V be a vector space over a field F . A nonempty subset W Ď V is a subspace of
V if and only if W is closed under addition and scaling by the elements of F .
Proof. If W is a subspace of V , then it is closed under addition and scaling by definition. Now
suppose that W Ď V is a nonempty subset of V that is closed under addition and scaling. Most of
the properties required of a vector space hold in W simply because they hold in V (since they say
something about all elements of a vector space). The only things to check are:

‚ Addition, restricted to W , has an additive identity. To that end, we will show that 0V PW .
‚ Every element x PW has an additive inverse in W . We will show that ´x PW , where ´x
is the additive inverse of x in V .

Since W is nonempty, there is at least one element x PW . But W is closed under scaling, so
0V “ 0F ¨ x P W,

as claimed. (Here we use Exercise 2.2.) Also, for any x PW , we have
´x “ p´1q ¨ x P W,

where we again use Exercise 2.2. �

Example 2.12. The set
tpx1, x2, x3q : x1 ` 2x2 ` 3x3 “ 0 and x1 ´ x2 ` x3 “ 0u

is a subspace of R3 (as a vector space over R). More generally, the set of solutions to a system of
homogeneous linear equations is a vector space. In some sense, the entire theory of vector spaces is
a way to generalize this example.
Example 2.13. The set Cpr0; 1sq of all continuous functions f : r0; 1s Ñ R is a subspace of Rr0;1s

(considered as an R-vector space).
Example 2.14. The set

"

f P Cpr0; 1sq :
ż 1

0
fpxqdx “ 0

*

is a subspace of Cpr0; 1sq. This is analogous to Example 2.12, with the expression
ż 1

0
fpxq dx “ 0

9The symmetric difference of two sets A and B is the set consisting of all elements that belong to exactly one of
the sets A, B. In other words, A4B “ pAYBqzpAXBq.
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playing the role of a homogeneous linear equation.

Example 2.15. The set of all twice-differentiable functions f : r0; 1s Ñ R satisfying

f2 ´ f 1 ` f “ 0 (2.16)

is another subspace of Cpr0; 1sq. Here, (2.16) is playing the role of a homogeneous linear equation.

Example 2.17. The set A of all functions f : r0; 1s Ñ R that have an antiderivative (i.e., a function
F : r0; 1s Ñ R such that F 1 “ f) is a subspace of Rr0;1s. Notice that Cpr0; 1sq is a subspace of A.

Exercise 2.18. Show that A ‰ Cpr0; 1sq. Hint: Consider the derivative of x2 sinp1{xq.

Example 2.19. The set of all sequences px0, x1, . . .q of real numbers such that for every n P N,

xn`2 “ xn`1 ` xn,

is a subspace of RN. One of the points in this subspace is the Fibonacci sequence p1, 1, 2, 3, 5, 8, . . .q.

Exercise 2.20. Show that the following sets are subspaces of RN:

`8pNq :“
"

px0, x1, . . .q P RN : sup
nPN

|xn| ă 8

*

;

`1pNq :“
#

px0, x1, . . .q P RN :
8
ÿ

n“0
|xn| ă 8

+

;

`2pNq :“
#

px0, x1, . . .q P RN :
8
ÿ

n“0
x2
n ă 8

+

.

(The last one is a bit tricky.)

Example 2.21. Let X be any set. Recall how in Example 2.9 we equipped the powerset PpXq
with the structure of an F2-vector space. Now let rXsă8 denote the set of all finite subsets of X.
Then rXsă8 is a subspace of PpXq (because the symmetric difference of two finite sets is finite).

Example 2.22. This is an extension of Example 2.21. Let X be a set and let F be a field. For a
function f : X Ñ F , let the support of f be the set

supppfq :“ tx P X : fpxq ‰ 0u.

Denote by rX Ñ F să8 the set of all functions f : X Ñ F whose support is finite. Then rX Ñ F să8

is a subspace of FX . This example will become surprisingly important later.

0

F

X

Figure 2. The graph of a function with finite support.
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2.C. Linear functions
The notion of a linear equation over an abstract vector space is captured in the concept of a linear
function.

Definition 2.23. Let V and W be vector spaces over the same field F . A function ϕ : V ÑW is
called linear (or, sometimes, F -linear) if:
(L1) for all x, y P V , ϕpx` yq “ ϕpxq ` ϕpyq;
(L2) for all a P F and x P V , ϕpa ¨ xq “ a ¨ ϕpxq.

If ϕ : V ÑW is a linear function, then the kernel of ϕ is the set
kerpϕq :“ tx P V : ϕpxq “ 0u Ď V,

and the image of ϕ is the set
impϕq :“ tϕpxq : x P V u ĎW.

Exercise 2.24. Show that if ϕ : V ÑW is a linear function, then ϕp0V q “ 0W .

You should think of the kernel of ϕ as the set of solutions to the “generalized linear equation”
ϕpxq “ 0.

The next lemma justifies this attitude by showing that kerpϕq is a vector space:

Lemma 2.25. Let V and W be vector spaces over a field F and let ϕ : V ÑW be a linear function.
Then kerpϕq is a subspace of V and impϕq is a subspace of W .

Proof. Since 0 P kerpϕq (see Exercise 2.24), the set kerpϕq is nonempty. To check that kerpϕq is
closed under addition, consider any x, y P kerpϕq. We have

ϕpx` yq “ ϕpxq ` ϕpyq “ 0` 0 “ 0,
so x` y P kerpϕq, as desired. Similarly, if x P kerpϕq and a P F , then

ϕpa ¨ xq “ a ¨ ϕpxq “ a ¨ 0 “ 0,
hence a ¨ x P kerpϕq. By Lemma 2.11, we conclude that kerpϕq is a subspace of V . Showing that
impϕq is a subspace of W is left as an exercise (see Exercise 2.26). �

Exercise 2.26. Prove that if V and W are vector spaces over a field F and ϕ : V ÑW is a linear
function, then impϕq is a subspace of W .

Several of the examples in §2.B are naturally described as kernels or images of linear functions.

Example 2.27. The function
R3 Ñ R2 : px1, x2, x3q ÞÑ px1 ` 2x2 ` 3x3, x1 ´ x2 ` x3q

is R-linear. (Cf. Example 2.12.)

Example 2.28. The function

Cpr0; 1sq Ñ R : f ÞÑ
ż 1

0
fpxq dx

is R-linear. (Cf. Example 2.14.)

Example 2.29. Let Dpr0; 1sq denote the set of all differentiable functions f : r0; 1s Ñ R. It is a
subspace of Rr0;1s, and the map

B : Dpr0; 1sq Ñ Rr0;1s : f ÞÑ f 1

is linear. The image of B is the space A from Example 2.17.
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2.D. Quotient spaces
In the light of the examples in §2.C, the following question appears natural:

Question 2.30. Can every subspace of a given vector space be expressed as kerpϕq or impϕq for
some linear function ϕ?

Recall that if W “ kerpϕq, then W is the solution set for the “generalized linear equation”

ϕpxq “ 0.

Thus, if the answer to Question 2.30 were positive, it would mean that linear equations are a general
way of identifying subspaces. The next theorem asserts that this is indeed the case:

Theorem 2.31. Let V be a vector space over a field F and let W be a subspace of V . Then there
exist F -vector spaces X and Y and linear functions

ϕ : X Ñ V and ψ : V Ñ Y

such that W “ impϕq “ kerpψq.

Proof. For X we can just take the space W itself with ϕ : W Ñ V being the identity map on W :

ϕpxq :“ x for all x PW.

Clearly, ϕ is linear and impϕq “W by definition.
The construction of the space Y and the map ψ : V Ñ Y such that kerpψq “W is somewhat more

subtle. To motivate it, imagine that we are already given a linear map ψ such that W “ kerpψq.
Then, for all x P V and w PW , we must have

ψpx` wq “ ψpxq ` ψpwq “ ψpxq ` 0 “ ψpxq. (2.32)

For x P V , let x`W denote the following subset of V :

x`W :“ tx` w : w PW u.

The set x`W is called the W -coset of x, or the translate of W by x. The set of all W -cosets is
denoted by V {W (so V {W is a set of sets). Note that W “ 0`W P V {W . Observation (2.32) can
be summarized as, “ψ is constant on the W -cosets.” Thus, for a coset S P V {W , we can set ψpSq to
be the common value of ψpxq for all x P S.

The linearity of ψ imposes some restrictions on the relationship between the values ψpSq for
different cosets S P V {W . Indeed, for all x, y P V ,

ψppx` yq `W q “ ψpx` yq “ ψpxq ` ψpyq “ ψpx`W q ` ψpy `W q. (2.33)

Similarly, if x P V and a P F , then we have

ψppaxq `W q “ ψpaxq “ aψpxq “ a ¨ ψpx`W q. (2.34)

The idea now is to equip the set V {W itself with the structure of a vector space such that the map
ψ given by ψpxq :“ x`W satisfies (2.33) and (2.34) by virtue of the definition.

Specifically, we endow V {W with addition and scaling operations defined by the formulas

px`W q ` py `W q :“ px` yq `W and apx`W q :“ paxq `W. (2.35)

Some explanation is necessary here. The above expressions are really shortcuts for more technical
definitions. A more precise way to define, say, the addition on V {W would be as follows: Given two
cosets S, T P V {W , choose any x, y P V such that S “ x`W and T “ y `W and set

S ` T :“ px` yq `W. (2.36)
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This leads to the question, why is the right-hand side of (2.36) independent of the choice of x and y?
If we chose some other elements x1, y1 P V such that S “ x1`W and T “ y1`W , then S`T would
be defined as px1 ` y1q `W , and we must make sure that

px` yq `W “ px1 ` y1q `W,

for otherwise (2.36) is not a proper definition of S ` T .

p0, 0q
W

S

T

S ` T

x

y

x` y

p0, 0q
W

S

T

S ` T

x1

y1
x1 ` y1

Figure 3. Adding W -cosets S and T in two ways.

To deal with this issue, we will use the following observation:

Claim 2.31.1. Let x, y P V . We have x`W “ y `W if and only if x´ y PW .

Proof. Note that x “ x` 0 P x`W . Hence, if x`W “ y `W , then x P y `W , i.e., x “ y `w for
some w PW . But then w “ x´ y, and hence x´ y PW , as desired.

Now assume that x´ y PW . For each w PW , we have

x` w “ y ` px´ yq ` w.

Since W is closed under addition, we conclude that px´ yq ` w PW , so x` w P y `W . Therefore,

x`W Ď y `W.

On the other hand, if x ´ y P W , then y ´ x “ p´1q ¨ px ´ yq is also in W (as W is closed under
scaling), and the same argument as before shows that

y `W Ď x`W.

Hence, x`W “ y `W , as claimed. %

To show that the right-hand side of (2.36) is independent of the choice of x and y, suppose that
S “ x`W “ x1 `W and T “ y `W “ y1 `W . By Claim 2.31.1, the differences x´ x1 and y ´ y1
belong to W . Therefore,

px` yq ´ px1 ` y1q “ px´ x1q ` py ´ y1q P W,

since W is closed under addition. But this means, by Claim 2.31.1 again, that

px` yq `W “ px1 ` y1q `W,

which is what we wanted.

Exercise 2.37. Show that the operation of scalar multiplication on V {W is similarly well-defined.

It is now easy to see that V {W is a vector space.

Exercise 2.38. Show that V {W , equipped with the operations given by (2.35), is a vector space.
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The vector space V {W is called the quotient of V by W . The additive identity of V {W is W
(recall that W “ 0`W P V {W ). Consider the function ψ : V Ñ V {W given by

ψpxq :“ x`W.

It is called the quotient map corresponding to W . The vector space structure on V {W is defined
precisely so as to make the quotient map linear; furthermore,

kerpψq “ tx P V : x`W “W u “ W.

This completes the proof of Theorem 2.31. �

Exercise 2.39. Let V be a vector space over a field F and let W be a subspace of V . Let x P V
and S P V {W . Show that S “ x`W if and only if x P S.

Exercise 2.40 (First isomorphism theorem). Let V and W be vector spaces over a field F
and let ϕ : V ÑW be a linear function. Show that the space impϕq is isomorphic to V { kerpϕq.

Extra exercises for Section 2
Exercise 2.41. For a real number x P R, let x pmod 1q denote the fractional part of x, i.e., the
unique number α P r0; 1q such that x´ α is an integer. For α, β P r0; 1q and r P R, define

α‘ β :“ pα` βq pmod 1q and r d α :“ prαq pmod 1q.
Does this definition make r0; 1q into an R-vector space?

Exercise 2.42 (Direct sums). Fix a field F . The direct sum of two F -vector spaces V and W is
the F -vector space V ‘W defined as follows. As a set, V ‘W is equal to V ˆW , and addition and
scalar multiplication on V ‘W are defined component-wise:

pv1, w1q ` pv2, w2q :“ pv1 ` v2, w1 ` w2q and a ¨ pv, wq :“ pa ¨ v, a ¨ wq.

Prove that a function f : V ÑW is linear if and only if its graph is a subspace of V ‘W .

3. Bases
3.A. A “better” version of Theorem 2.31

Recall that the purported goal of Theorem 2.31 was to show that every subspace of a vector space
can be defined by a “generalized system of linear equations.” In that regard, Theorem 2.31 is not
entirely satisfactory. Imagine that W is a subspace of, say, R5, viewed as a vector space over R.
Then, according to Theorem 2.31, W is the kernel of the quotient map R5 Ñ R5{W . This is not
particularly illuminating, because the quotient space R5{W is defined to have precisely this property;
in some sense, it is not a very “natural” space.

This situation is remedied by the following fact:

Theorem 3.1. Let V be a vector space over a field F and let W be a subspace of V . Then there
exist linear functions

ϕ : V Ñ V and ψ : V Ñ V

such that W “ impϕq “ kerpψq.

If W is a subspace of R5, Theorem 3.1 asserts that W is the kernel of some linear function
R5 Ñ R5. It is not hard to see that this is equivalent to identifying W with the solution set of an
“honest-to-goodness” system of five homogeneous linear equations in five variables.

Let us ponder on how we could try to prove Theorem 3.1 in a specific case: Suppose that V “ R,
viewed as a vector space over Q (so only scaling by the rationals is allowed), and W “ Q. To prove
that W is the image of a linear map from R to R, we have to find a Q-linear function ϕ : RÑ Q
that is not identically zero.
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Since we don’t know what else to do, let’s take an arbitrary real number and decide where ϕ
should send it. Say, take the number 1 and declare ϕp1q :“ 1. Since ϕ must be Q-linear, we then
also have

ϕpaq “ a ¨ ϕp1q “ a, for all a P Q.
But the values of ϕpxq for irrational x are still undefined. So take some irrational number, say

?
2,

and declare ϕp
?

2q :“ 1. Again, ϕ must be Q-linear, and we are forced to have

ϕpa` b
?

2q “ a ¨ ϕp1q ` b ¨ ϕp
?

2q “ a` b, for all a, b P Q.

Thus, the values of ϕ are determined for all real numbers of the form a` b
?

2 with a and b rational.
But, for instance, ϕp

?
3q is still undefined, so we can declare ϕp

?
3q :“ 1, which forces

ϕpa` b
?

2` c
?

3q “ a` b` c, for all a, b, c P Q.

Yet, there are still infinitely many real numbers x for which ϕpxq is undefined. . .
In the above attempted construction, we were building a sequence of real numbers 1,

?
2,
?

3,
. . . . To each of the numbers in the sequence, we could assign the value of ϕ arbitrarily, but these
arbitrary decisions were forcing particular values at some other real numbers. If the values at all
real numbers were determined, we would have our desired ϕ. For this, the sequence 1,

?
2,
?

3, . . .
must have the properties of a basis for R over Q. In this section, we will define what a basis is
formally and show that every vector space has one.

3.B. Spanning sets and independent sets
Exercise 3.2 (important). Let V and W be F -vector spaces and let ϕ : V ÑW be a linear map.
Show that:

‚ ϕ is surjective ðñ impϕq “W ;
‚ ϕ is injective ðñ kerpϕq “ t0u.

Exercise 3.3. Let V be a vector space over a field F and let W be a nonempty family of subspaces
of V . Show that

Ş

W, the intersection of all W P W, is also a subspace of V .

Remark 3.4. Note that the family W in Exercise 3.3 is allowed to be infinite.

Using the result of Exercise 3.3, we can make the following important definition:

Definition 3.5. Let V be a vector space over a field F and let X Ď V be a subset of V . Let WX

be the set of all subspaces W Ď V such that X ĎW . Since V P WX , the family WX is nonempty,
and hence we can define the span of X to be the space

SpanpXq :“
č

WX .

In other words, SpanpXq is the smallest subspace of V that contains X. Sometimes, we write
SpanF pXq instead of SpanpXq to explicitly indicate that we are working with vector spaces over F
(for instance, if we want to make a distinction between SpanRpXq and SpanQpXq for X Ď R).

Exercise 3.6. Verify the following properties of span:
‚ Spanp∅q “ t0u and SpanpV q “ V ;
‚ X Ď SpanpXq;
‚ Y Ď X ùñ SpanpY q Ď SpanpXq;
‚ SpanpSpanpXqq “ SpanpXq.

Definition 3.5 describes the span ofX abstractly and does not provide a concrete way of determining
whether a given vector y is in SpanpXq. Such a concrete description is supplied by the next lemma:
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Lemma 3.7. Let V be a vector space over a field F and let X Ď V be a subset of V . Define
Span˚pXq to be the set of all linear combinations of elements of X, i.e., vectors of the form

a1x1 ` ¨ ¨ ¨ ` anxn, (3.8)

where a1, . . . , an P F and x1, . . . , xn P X (this includes the case n “ 0, in which, by convention,
expression (3.8) evaluates to 0V ). Then Span˚pXq “ SpanpXq.

Proof. We have Span˚pXq Ď SpanpXq because SpanpXq contains X and 0V and is closed under
addition and scaling. Conversely, SpanpXq Ď Span˚pXq because, as can be easily checked, Span˚pXq
is a subspace of V containing X. �

Note that (3.8) involves only finitely many elements of X, even if X itself is infinite (this is to be
expected since there is no way to define infinite sums in an arbitrary vector space). Nevertheless, it
is convenient to think of linear combinations of elements of X as sums running over the entire set:

ÿ

xPX

cpxq ¨ x,

where all but finitely many of the coefficients cpxq are zero, which, in effect, makes the sum finite.
Recall from Example 2.22 that rX Ñ F să8 is the set of all functions c : X Ñ F whose support
supppcq :“ tx P X : cpxq ‰ 0u is finite. For each such c P rX Ñ F să8, it makes sense to define

`Xpcq :“
ÿ

xPX

cpxq ¨ x P V.

This gives a linear function `X : rX Ñ F să8 Ñ V . With this notation, Lemma 3.7 can be stated as:

SpanpXq “ imp`Xq.

Definition 3.9. Let V be a vector space over a field F . We say that a set X Ď V is:
‚ spanning if imp`Xq “ SpanpXq “ V , i.e., if the function `X is surjective;
‚ independent if kerp`Xq “ t0u, i.e., if the function `X is injective;
‚ a basis if it is both spanning and independent, i.e., if the function `X is bijective.

Remark 3.10. Explicitly, kerp`Xq “ t0u means that for any c P rX Ñ F să8,
ÿ

xPX

cpxq ¨ x “ 0 ðñ cpxq “ 0 for all x P X.

Remark 3.11. Since the map `X : rX Ñ F să8 Ñ V is linear, if X is a basis for V , then `X is an
isomorphism of vector spaces, and thus V is isomorphic to rX Ñ F să8.

Exercise 3.12. Show that a subset of an independent set is independent. Show that a superset of
a spanning set is spanning.

Once we have found a basis for a vector space, we have full control over the linear functions on
V , as explained by the following theorem:

Theorem 3.13 (Linear functions in terms of a basis). Let V and W be F -vector spaces.
Suppose that B Ď V is a basis for V . Then for each function ϕ : B Ñ W , there exists a unique
linear function ϕ̂ : V ÑW such that ϕ̂pxq “ ϕpxq for all x P B, and this ϕ̂ is given by the formula

ϕ̂

˜

ÿ

xPB

cpxq ¨ x

¸

:“
ÿ

xPB

cpxq ¨ ϕpxq. (3.14)

Proof. This is a theorem that “proves itself,” meaning that once we “unwrap” its statement, it
becomes almost tautological. Suppose that ϕ̂ : V ÑW is a linear map that extends ϕ. Since B is
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spanning, every element of V can be written as a linear combination of elements of B, i.e., in the
form

ř

xPB cpxq ¨ x for some c P rX Ñ F să8. Since ϕ̂ is linear, it respects addition and scaling, so

ϕ̂

˜

ÿ

xPB

cpxq ¨ x

¸

“
ÿ

xPB

ϕ̂pcpxq ¨ xq “
ÿ

xPB

cpxq ¨ ϕ̂pxq “
ÿ

xPB

cpxq ¨ ϕpxq.

This shows that ϕ̂ must be defined by (3.14), which proves its uniqueness. Furthermore, since B is
independent, every element of V can be expressed in the form

ř

xPB cpxq ¨ x in only one way, and
thus (3.14) is a valid definition. It remains to verify that the function ϕ̂ given by (3.14) is linear,
but that is a straightforward exercise. �

3.C. The first fundamental theorem of linear algebra and its ramifications
Theorem 3.15 (First fundamental theorem). Every vector space has a basis.

Moreover, if V is an F -vector space, I Ď V is an independent set, S Ď V is a spanning set, and
I Ď S, then there exists a basis B such that I Ď B Ď S.

We will prove Theorem 3.15 in the next subsection. For now, let us consider some of its
consequences. For instance, we can now easily deduce Theorem 3.1:

Theorem 3.1. Let V be a vector space over a field F and let W be a subspace of V . Then there
exist linear functions

ϕ : V Ñ V and ψ : V Ñ V

such that W “ impϕq “ kerpψq.

Proof. By Theorem 3.15, W has a basis BW . Since BW is, by definition, an independent set, we
may apply the “moreover” part of Theorem 3.15 with I “ BW and S “ V to obtain a basis B for V
such that BW Ď B. By Theorem 3.13, there exist linear functions ϕ : V Ñ V and ψ : V Ñ V such
that for all x P B,

ϕpxq “

#

x if x P BW ;
0 if x P BzBW ,

and ψpxq “

#

0 if x P BW ;
x if x P BzBW .

We claim that W “ impϕq “ kerpψq, as desired. Indeed, consider any vector v P V . Since B is a
basis for V , there is a unique way to express v as a linear combination of the elements of B:

v “
ÿ

xPB

cpxq ¨ x,

where c P rB Ñ F să8. Separating the terms corresponding to the basis vectors in BW and in
BzBW , we can write

v “
ÿ

xPBW

cpxq ¨ x `
ÿ

xPBzBW

cpxq ¨ x.

Then
ϕpvq “

ÿ

xPBW

cpxq ¨ ϕpxq `
ÿ

xPBzBW

cpxq ¨ ϕpxq “
ÿ

xPBW

cpxq ¨ x. (3.16)

This shows that ϕpvq is a linear combination of elements of BW , and hence ϕpvq PW and impϕq ĎW .
On the other hand, any linear combination of the elements of BW can appear as the last expression
in (3.16), and, since BW spans W , this means that W Ď impϕq.

Exercise 3.17. Show that ϕpwq “ w for all w PW .

Proving that W “ kerpψq is left as an exercise. �
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Theorem 3.15 is much less obvious than might seem at first. We are used to thinking about vector
spaces such as Rn (over R), where a basis is easy to find:

p1, 0, 0, . . . , 0q, p0, 1, 0, . . . , 0q, p0, 0, 1, . . . , 0q, . . . , p0, 0, 0, . . . , 1q.
On the other hand, consider the space RN of all infinite sequences of real numbers. It is tempting to
guess that the following infinite set should be a basis for this space:

e0 :“p1, 0, 0, 0, . . .q,
e1 :“p0, 1, 0, 0, . . .q,
e2 :“p0, 0, 1, 0, . . .q,

. . . . . . . . . . . . .

However, this guess is wrong! Indeed, the sequence
p1, 1, 1, 1, . . .q,

all of whose entries are equal to 1, is not in the span of te0, e1, e2, . . .u (because linear combinations
only involve finite sums). In fact, the span of te0, e1, e2, . . .u is the space rNÑ Rsă8 of all sequences
with finite support (i.e., with only finitely many nonzero entries). Actually, any basis for RN is much
larger than the set te0, e1, e2, . . .u—it is necessarily uncountable.10

The following corollary is another indication of how surprising Theorem 3.15 is:

Corollary 3.18 (to Theorem 3.15). Every F -vector space is isomorphic to a space of the form
rX Ñ F să8 for some set X.

Proof. See Remark 3.11. �

So, for example, R, viewed as a vector space over Q, is isomorphic to rX Ñ Qsă8 for some set X.
In fact, one can show that R is isomorphic to rR Ñ Qsă8. What’s more, R2, viewed as a vector
space over Q, is also isomorphic to rRÑ Qsă8, and hence, R2 and R are isomorphic as Q-vector
spaces!11 In other words, there exists a Q-linear bijection f : R2 Ñ R. Let us split this statement
into two parts:

‚ there is a bijection f : R2 Ñ R;
‚ such a bijection can be made Q-linear.

Without the second part, constructing an arbitrary bijection f : R2 Ñ R is actually not difficult.
Below we describe an injection R2 Ñ R; making it into a bijection is left as an exercise.12

Lemma 3.19. There exists an injective function f : R2 Ñ R.

Proof sketch. We have to describe a way to “encode” a pair of real numbers pa, bq into a
single real number c so that a and b can recovered from c uniquely. One way to achieve this is to
write a and b in decimal, adding leading zeros if necessary to ensure that the integer parts of a and
b are of the same length, and then assemble c as follows:

c :“
ˆ

1 if a ě 0
2 if a ă 0

˙ ˆ

integer
part of a

˙ ˆ

1 if b ě 0
2 if b ă 0

˙ ˆ

integer
part of b

˙

.

¨

˚

˝

intersperse
the digits of the
fractional parts

of a and b

˛

‹

‚

.

So, for example, if a “ 314.1592 . . . and b “ ´1.2345 . . ., then c “ 13142001.12539425 . . .. �

10A set X is uncountable if there is no surjection NÑ X, in other words, if there is no way to list all the elements
of X in a sequence x0, x1, x2, . . . .

11They are not isomorphic as R-vector spaces though.
12Although one might say that an injection from R2 to R that also leaves some of the elements of R uncovered is

even more counter-intuitive than a bijection!
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Exercise 3.20. Describe a bijective function f : R2 Ñ R.

It turns out that there is no “explicit” way, like in the above proof of Lemma 3.19, to describe a
Q-linear injection R2 Ñ R. It follows from results in the area of mathematics called descriptive set
theory that every Q-linear function f : R2 Ñ R that one can “explicitly write down” (the technical
term is “Borel”) must be continuous. (This phenomenon is known as automatic continuity.) And it
is fairly easy to see that a continuous function R2 Ñ R cannot be injective.

How can this be? How can we prove that a Q-linear bijection f : R2 Ñ R exists without being
able to explicitly describe it? This apparent paradox is a consequence of the fact that the proof of
Theorem 3.15 relies on the so-called Axiom of Choice. It is one of the generally accepted axioms of
set theory that form the foundation of mathematics. While most other axioms assert the existence
of “concrete” sets, such as the empty set or the powerset PpXq of a given set X, the Axiom of
Choice postulates the existence of a certain function without explicitly stating what it is:

Axiom 3.21 (Axiom of Choice). Let F be a set of nonempty sets. Then there exists a function
ch : F Ñ

Ť

F such that for all X P F , we have chpXq P X.

The function ch in the Axiom of Choice is called a choice function, because it “chooses” one
element chpXq from each set X P F . Notice that the Axiom of Choice does not specify how the
chosen element chpXq is determined; it merely claims that some choice is possible.

Finally, let us point out that Theorem 3.15 crucially relies on the fact that F is a field. If we
replace the field F by a commutative ring R in the definition of a vector space, we obtain a structure
called a module over R (so, a vector space is a module over a field). The definition of a basis makes
sense for modules as well as for vector spaces, but if R is not a field, then a module over R may not
have a basis. Here’s a simple example:

Example 3.22. Let n be an integer ě 2. The set Zn of residues modulo n is naturally a module
over Z, but this module does not have a basis. Indeed, for every x P Zn, we have

n ¨ x “ 0 pmod nq,

so the set txu is not independent. Hence, the only independent set in Zn is ∅, and it is certainly
not spanning. Note, however, that if n is prime, then Zn “ Fn does have a basis as a vector space
over Fn (any one-element set txu with x ‰ 0 is a basis).

3.D. Proof of Theorem 3.15
Lemma 3.23. Let V be a space over a field F . Let I Ď V be an independent set and let y P V zI.
The following statements are equivalent:

(1) I Y tyu is not an independent set;
(2) y P SpanpIq.

Proof. (1) ùñ (2). If the set I Y tyu is not independent, then we can write
a0y ` a1x1 ` ¨ ¨ ¨ ` anxn “ 0,

where x1, . . . , xn P I and not all of the coefficients a0, a1, . . . , an are zero. Since I is independent,
we must have a0 ‰ 0; thus,

y “ ´
a1
a0
x1 ´ ¨ ¨ ¨ ´

an
a0
xn P SpanpIq.

(2) ùñ (1). Since y P SpanpIq, y can be expressed as a linear combination of elements of I:
y “ a1x1 ` ¨ ¨ ¨ ` anxn.

But then y can be expressed in two distinct ways as a linear combination of elements of I Y tyu,
meaning that the set I Y tyu is not independent. �
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Lemma 3.23 gives a convenient criterion for when a given independent set is a basis. Say that an
independent set I Ď V is maximal if there is no independent set J Ď V with J Ľ I. Similarly, a
spanning set S is minimal if there is no spanning set T such that T Ĺ S.

Lemma 3.24. Let V be an F -vector space and let X Ď V . The following statements are equivalent:
(1) X is a basis;
(2) X is a maximal independent set;
(3) X is a minimal spanning set.

Proof. We will prove the equivalence (1) ðñ (2), while (1) ðñ (3) is left as an exercise.
(1) ùñ (2). Assume that X is a basis. Consider any y P V zX. Since X is spanning, y P SpanpXq.

By Lemma 3.23, the set X Y tyu is not independent, and hence X is a maximal independent set.
(2) ùñ (1). Assume that X is a maximal independent set. We need to argue that X is spanning.

to that end, consider any y P V . If y P X, then y P SpanpXq by definition, so assume y R X. But
then the set X Y tyu is not independent, which, by Lemma 3.23, means that y P SpanpXq. �

Definition 3.25. We say that sets A and B are comparable if A Ď B or B Ď A. A chain is a set
C of pairwise comparable sets.

Recall that
Ť

C denotes the union of all the sets in C; i.e.,
ď

C :“ tx : x P A for some A P Cu.

Example 3.26. The set tt0u, t0, 1u, t0, 1, 2u, . . .u is a chain. The union of this chain is N.

Example 3.27. More generally, if A0, A1, A2, . . . are sets such that
A0 Ă A1 Ă A2 Ă ¨ ¨ ¨ ,

then the set tA0, A1, A2, . . .u is a chain, whose union is A0 YA1 YA2 Y . . .. Similarly, if
A0 Ą A1 Ą A2 Ą ¨ ¨ ¨ ,

then tA0, A1, A2, . . .u is a chain, whose union is A0.

Example 3.28. The set tp´8;αq : α P Ru is a chain. The union of this chain is R.

Observe that if C is a chain and A1, . . . , An P C (when n is finite), then there is an index i such
that Ai “ A1 Y . . .YAn.

Lemma 3.29. Let V be a vector space over a field F . If C is a chain of independent subsets of V ,
then the set

Ť

C is also independent.

Proof. Suppose, towards a contradiction, that C is not independent. This means that there exist
some x1, . . . , xn P

Ť

C and nonzero a1, . . . , an P F such that
a1x1 ` ¨ ¨ ¨ ` anxn “ 0.

Since x1, . . . , xn P
Ť

C, there are sets A1, . . . , An P C such that x1 P A1, . . . , xn P An. But since C
is a chain, there is an index i such that Ai “ A1 Y . . .YAn. Therefore, x1, . . . , xn P Ai, and hence
Ai is not independent. This is a contradiction. �

Remark 3.30. It is important in Lemma 3.29 to assume that C is a chain, since a union of
independent sets is not, in general, independent. For instance, the sets

tp1, 1qu and tp2, 2qu
are independent in R2, but their union tp1, 1q, p2, 2qu is not.

With Lemma 3.29 in hand, we can deduce Theorem 3.15 from the following general fact, known
as Zorn’s lemma:
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Theorem 3.31 (Zorn’s lemma). Let F be a family of sets with the following properties:
(Z1) ∅ P F ;
(Z2) if A P F and B Ď A, then B P F ;
(Z3) if C Ď F is a chain, then

Ť

C P F .
Then F has a maximal element; i.e., there is a set A P F such that there is no B P F with B Ľ A.

Remark 3.32. Theorem 3.31 is not the most general form of Zorn’s lemma. In particular, assump-
tion (Z2) can be removed, while (Z1) can be weakened to F ‰ ∅ (see Theorem 4.3).

Proof that every vector space has a basis. Let V be an F -vector space and let F
be the set of all independent subsets of V . Then F satisfies the assumptions of Zorn’s lemma (where
(Z3) is given by Lemma 3.29), and hence F has a maximal element. By Lemma 3.24, a maximal
independent set is a basis, and hence we are done. �

Exercise 3.33. Prove the “moreover” part of Theorem 3.15. Hint: Consider the family F of all
sets X Ď SzI such that I YX is independent.

What remains is to prove Theorem 3.31; this will be done in the next subsection.

3.E. Proof of Zorn’s lemma

The Axiom of Choice is obviously true, the well-ordering
principle obviously false, and who can tell about Zorn’s lemma?

Jerry L. Bona

This is likely the most challenging proof in these notes, but coming to grips with its logic can be
immensely beneficial, as it involves several fundamental ideas that play an important role throughout
mathematics.

We argue by contradiction. Let F be a family of sets satisfying (Z1), (Z2), and (Z3) and assume
that F has no maximal element. In other words, for each A P F , there is some B P F such that
A Ĺ B. Due to (Z2), we may in fact assume that B “ AY txu for a single element x R A. (This is
the only reason for including (Z2) in the list of assumptions.)

3.E.1. The plan of attack.—Before we proceed to the proof, let’s try to build some intuition about
the structure of F . By (Z1), ∅ P F . Since ∅ is not a maximal element of F , there is some a0 such
that ta0u P F . But since ta0u is also not maximal, there is some a1 ‰ a0 such that ta0, a1u P F .
Repeating this argument, we obtain an infinite sequence of sets

∅ Ă ta0u Ă ta0, a1u Ă ta0, a1, a2u Ă ¨ ¨ ¨ ,

all of which belong to F . Now notice that

t∅, ta0u, ta0, a1u, ta0, a1, a2u, . . .u

is a chain, so we can apply (Z3) and conclude that the union of this chain is in F ; that is, we have
ta0, a1, a2, . . .u P F . Thus, we’ve found an infinite set in F . But that’s not all. The set ta0, a1, . . .u
is also not maximal—hence, there is some b0 such that ta0, a1, . . .u Y tb0u P F . As before, we can
repeat this argument to obtain an infinite sequence of sets

ta0, a1, . . .u Ă ta0, a1, . . .u Y tb0u Ă ta0, a1, . . .u Y tb0, b1u Ă ta0, a1, . . .u Y tb0, b1, b2u Ă ¨ ¨ ¨ ,

and then use (Z3) to conclude that ta0, a1, . . .uYtb0, b1, . . .u P F . In other words, we are able to add
infinitely many new elements to any set in F . Iterating this construction, we now get a sequence

ta0, a1, . . .u Ă ta0, a1, . . .u Y tb0, b1, . . .u Ă ta0, a1, . . .u Y tb0, b1, . . .u Y tc0, c1, . . .u Ă ¨ ¨ ¨ .
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But this sequence is again a chain, so we can apply (Z3) to infer that

ta0, a1, . . .u Y tb0, b1, . . .u Y tc0, c1, . . .u Y ¨ ¨ ¨ P F .

And so on—this process can be continued indefinitely.
Our strategy now is to identify the “final stage” of this process: the collection of all sets that will

ever appear in this construction. We will denote this collection T0 (this choice of notation will make
sense soon). So, T0 should look like this:

T0 “ t∅, ta0u, ta0, a1u, ta0, a1, a2u, . . . . . . . . .

ta0, a1, . . .u, ta0, a1, . . .u Y tb0u, ta0, a1, . . .u Y tb0, b1u, ta0, a1, . . .u Y tb0, b1, b2u, . . . . . . . . .

ta0, a1, . . .u Y tb0, b1, . . .u, ta0, a1, . . .u Y tb0, b1, . . .u Y tc0u, . . . . . . . . .

ta0, a1, . . .u Y tb0, b1, . . .u Y tc0, c1, . . .u, . . . . . . . . .

. . . . . . . . .

ta0, a1, . . .u Y tb0, b1, . . .u Y tc0, c1, . . .u Y . . . , . . . . . . . . .

. . . . . . . . . u.

By definition, for every set A P T0, T0 also contains a set A Y txu with x R A. As well, for every
chain C Ď T0, the union

Ť

C of this chain is in T0. And here’s the punchline:
The set T0 itself is a chain!

This means that
Ť

T0 P T0. But then there is some new element x R
Ť

T0 such that p
Ť

T0qYtxu P T0,
which is, of course, impossible.

This is all nice and well, I hear you say, but what is this T0, exactly? “All the sets that will
ever appear in this construction” is far from a precise definition. For that matter, how is “this
construction” defined? To address these questions, and make the above intuition into a rigorous
proof, note that on each step of the construction we do one of the following two things:

(i) either we add a new element to a set that has already been constructed;
(ii) or we take the union of a chain of constructed sets.

Thus, we could say that T0 is “the set of all sets that can be built from ∅ by repeatedly applying
operations (i) and (ii).” However, this is also not fully satisfactory, since it is not clear what
“repeatedly” means here (you should keep in mind that we have to repeat (i) and (ii) infinitely many
times). What we will actually do is let T0 be the smallest set that contains ∅ and is closed under
operations (i) and (ii). (This is reminiscent of the definition of the span of a subset X Ď V : It can
be both defined as the set of all vectors that can be obtained from X by taking linear combinations,
and as the smallest subspace of V containing X.)

3.E.2. Towers and the Induction Principle.—Recall that, since F has no maximal element, for each
A P F , there is some x R A such that AY txu P F . Pick one such x and denote it fpAq. Define

A1 :“ AY tfpAqu.

By definition, A1 P F , A Ă A1, and A1 contains precisely one element that is not in A, namely fpAq.
We call A1 the successor of A. (This is where we use the Axiom of Choice.)

Call a subset T Ď F a tower if it has the following properties:
(T1) ∅ P T ;
(T2) if A P T , then A1 P T ;
(T3) if C Ď T is a chain, then

Ť

C P T .
Note that there is at least one tower, namely F . Let T0 be the intersection of all towers; that is,
A P T0 if and only if A P T for every tower T .

Exercise 3.34. Show that T0 is a tower.
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Thus, T0 is the smallest tower.13 By definition, T0 contains those and only those sets that must
belong to every tower; morally speaking, this should mean that T0 is the set of all sets that can be
obtained from ∅ by repeatedly taking successors and unions of chains. To vindicate this intuition,
we have to prove that T0 is a chain.

Claim. If we can show that T0 is a chain, then we can finish the proof of Zorn’s lemma.

Proof. If T0 is a chain, then, applying (T3) with T0 in place of C, we get
Ť

T0 P T0. By (T2),
p
Ť

T0q
1 P T0 as well, and thus fp

Ť

T0q P p
Ť

T0q
1 Ď

Ť

T0. But fp
Ť

T0q R
Ť

T0 by definition, and this
contradiction completes the proof of Zorn’s lemma. �

If P is a property of sets, then we write PpAq to mean that the set A has P.

Lemma 3.35 (Induction Principle). Let P be a property of sets. Suppose that:
(I1) Pp∅q;
(I2) for all A P T0, if PpAq, then PpA1q;
(I3) if C Ď T0 is a chain of sets that have P, then Pp

Ť

Cq.
Then PpAq for all A P T0.

Proof. The assumptions of the lemma mean that the set
U :“ tA P T0 : PpAqu

is a tower contained in T0. But T0 is the smallest tower, and hence U “ T0. �

The name “Induction Principle” is due to the analogy between Lemma 3.35 an the principle of
mathematical induction, which says that if P is a property of natural numbers such that:

(1) Pp0q; and
(2) for all n P N, if Ppnq, then Ppn` 1q,

then Ppnq for all n P N. Condition (I1) is analogous to (1), while (I2) plays the role of the induction
step (2). However, in Lemma 3.35, there is one more assumption, namely (I3), which handles the
induction after “more than N steps.”

3.E.3. The proof.—We say that a set A P T0 is T0-comparable if A is comparable with every B P T0.
Our goal is to show that every set A P T0 is T0-comparable, since this would mean that T0 is a chain.
To this end, we will use the Induction Principle.

(I1) The empty set ∅ is T0-comparable, since ∅ Ď B for all B P T0.
(I2) This step is somewhat complicated, and we will come back to it later.
(I3) Suppose that C Ď T0 is a chain of T0-comparable sets. Take any B P C. We have to show that

B Ď
ď

C or
ď

C Ď B.

There are two cases to consider.
Case 1: There is some A P C such that B Ď A. In this case B Ď

Ť

C.
Case 2: There is no A P C such that B Ď A. Since every A P C is T0-comparable, and hence
comparable with B, this means that for all A P C, we have A Ď B. But then

Ť

C Ď B as well.

Now let’s return to (I2). Let A P T0 be T0-comparable. We need to show that A1 is T0-comparable
as well. To that end, take any B P T0. Our goal is to prove that B Ď A1 or A1 Ď B.

Case 1: B Ď A. Then B Ď A1 as well.
Case 2: B Ę A. Since A is T0-comparable, this means that A Ĺ B. In this case, we want to
conclude that A1 Ď B. To achieve this, we will prove the following lemma:
13Perhaps calling it the slimmest tower would be even more accurate.
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Lemma 3.36. For A P T0, define
UA :“ tB P T0 : B Ď A or A1 Ď Bu.

If A is T0-comparable, then UA “ T0.

Once Lemma 3.36 is established, we may conclude that if B Ę A, then A1 Ď B, as desired.

It now remains to prove Lemma 3.36.

Proof of Lemma 3.36. The proof uses the Induction Principle again.
Exercise 3.37. Show that (I1) and (I3) hold; that is, prove that:

‚ ∅ P UA;
‚ if C Ď UA is a chain, then

Ť

C P UA.
To verify (I2), let B P UA. We have to show that B1 P UA. Since B P UA, there are three cases:

Case 1: A1 Ď B. Then A1 Ď B1, and hence B1 P UA.
Case 2: B “ A. Then B1 “ A1, and hence B1 P UA.
Case 3: B Ĺ A. This is the most interesting case, and the crux of the entire proof of Zorn’s
lemma. We wish to show that B1 Ď A. Suppose, towards a contradiction, that B1 Ę A. Since A
is T0-comparable, it is, in particular, comparable with B1. Thus, if B1 Ę A, then A Ĺ B1. This
means that B1 contains all the elements of AzB (of which there is at least one since B Ĺ A) plus
also at least one element not in A. Therefore, |B1zB| ě 2. But, by definition, the only element of
B1 that is not in B is fpBq, i.e., |B1zB| “ 1. This contradiction completes the proof. �

3.F. Applying Theorem 3.15
We already saw a corollary of Theorem 3.15, namely Theorem 3.1. Another immediate consequence
of Theorem 3.15 is the existence of a large family of functions R Ñ R that are Q-linear but not
R-linear. Indeed, let B be a basis for R as a Q-vector space. Then every function ϕ : B Ñ R has a
(unique) Q-linear extension ϕ̂ : RÑ R; but unless there is a real number c P R such that ϕpxq “ cx
for all x P B, the function ϕ̂ is not going to be R-linear.
Exercise 3.38 (Q- l inear functions are weird). A set S Ď R2 is dense in R2 if for every point
p P R2 and for every real ε ą 0, there is a point q P S such that the distance between p and q is less
than ε. In other words, S is dense in R2 if S intersects every disc D Ă R2 of positive radius:

D There is a point of S somewhere in here

If we were to draw a picture of a dense subset of the plane giving each point an arbitrarily small
positive thickness, it would look like this:

Suppose that f : RÑ R is a function that is Q-linear but not R-linear. Show that the graph of f is
dense in R2. Hint. What is SpanRpΓf q?
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With Theorem 3.15 in hand, we can now solve Problem 1.1. The proof given below uses a basis
for R as a Q-vector space to reduce a question about real numbers to a question about finite fields.

Theorem 3.39. Let 0 ď a1 ă ¨ ¨ ¨ ă an be distinct integers and suppose that f : ZÑ R is a function
such that for all k P Z and ` P Z`, we have

fpk ` a1`q ` fpk ` a2`q ` ¨ ¨ ¨ ` fpk ` an`q “ 0. (3.40)

Then fpmq “ 0 for all m P Z.

Proof. This elegant argument is due to the user grobber on The Art of Problem Solving.
Suppose that f satisfies (3.40). Plugging in k “ m´ an and ` “ 1, we get

fpmq “ ´fpm´ an ` a1q ´ fpm´ an ` a2q ´ ¨ ¨ ¨ ´ fpm´ an ` an´1q. (3.41)

The main consequence of (3.41) is that if we know the values

fpm´ anq, fpm´ an ` 1q, . . . , fpm´ 1q,

then we can apply (3.41) repeatedly to compute the values fpmq, fpm` 1q, fpm` 2q, and so on.
Similarly, plugging in k “ m´ a1 and ` “ 1 gives

fpmq “ ´fpm´ a1 ` a2q ´ fpm´ a1 ` a3q ´ ¨ ¨ ¨ ´ fpm´ a1 ` anq,

which means that knowing the values

fpm` 1q, fpm` 2q, . . . , fpm` anq

is enough to also compute the values fpmq, fpm´ 1q, fpm´ 2q, &tc. To summarize, f is completely
determined by its values at any an consecutive integers.

After these preliminary observations, we proceed in four steps.

Step 1: Let p be a prime number ą n. If f : ZÑ Fp satisfies (3.40), then fpmq “ 0 for all m.

Proof. Indeed, let p be a prime number ą n and suppose that f : ZÑ Fp satisfies (3.40). There are
only finitely many (namely pan) distinct sequences of elements of Fp of length an, while there are
infinitely many integers. Therefore, for some i ă j, the sequences

pfpi` 1q, fpi` 2q, . . . , fpi` anqq and pfpj ` 1q, fpj ` 2q, . . . , fpj ` anqq

coincide. But then fpmq “ fpm ` j ´ iq for all m P Z, i.e., f is periodic with period t :“ j ´ i.
Applying (3.40) with k “ m and ` “ t gives

0 “ fpm` a1tq ` ¨ ¨ ¨ ` fpm` antq “ n ¨ fpmq.

Since p ą n, this implies fpmq “ 0, as desired. %

Step 2: If f : ZÑ Z satisfies (3.40), then fpmq “ 0 for all m.

Proof. For a prime number p ą n, define fp : ZÑ Fp by

fppmq :“ fpmq pmod pq.

By Step 1, for every m P Z, we have fppmq “ 0, i.e., fpmq is divisible by p. The only integer that is
divisible by every prime number bigger than n is 0, so fpmq “ 0, as claimed. %

Step 3: If f : ZÑ Q satisfies (3.40), then fpmq “ 0 for all m.

Proof. Let d be a common denominator of fp1q, fp2q, . . . , fpanq, and let gpmq :“ dfpmq. Then
gp1q, gp2q, . . . , gpanq are integers. Moreover, g still satisfies (3.40). From (3.41), we conclude that
gpmq is an integer for all m P Z, and, by Step 2, gpmq “ 0, and hence fpmq “ 0, for all m P Z. %
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Finally, consider a function f : ZÑ R that satisfies (3.40). Let B Ă R be a basis for R as a vector
space over Q. For each m P Z and x P B, let fxpmq be the coefficient of x in the representation of
fpmq as a linear combination of the elements of B; in other words, write

fpmq “
ÿ

xPB

fxpmq ¨ x,

where the values fxpmq, x P B, are rational numbers, only finitely many of which are nonzero. We
claim that for each x P B, the function fx : ZÑ Q satisfies (3.40). Indeed, we have

fpk ` a1`q ` ¨ ¨ ¨ ` fpk ` an`q “
ÿ

xPB

fxpk ` a1`q ¨ x` ¨ ¨ ¨ `
ÿ

xPB

fxpk ` an`q ¨ x

“
ÿ

xPB

pfxpk ` a1`q ` ¨ ¨ ¨ ` fxpk ` an`qq ¨ x “ 0,

and, since B is a basis, this is only possible when
fxpk ` a1`q ` ¨ ¨ ¨ ` fxpk ` an`q “ 0 for all x P B.

Hence, by Step 3, fxpmq “ 0 for all m. But then fpmq “
ř

xPB 0 ¨x “ 0 as well, and we are done. �

Extra exercises for Section 3
Exercise 3.42. Let V be a vector space over a field F and let W Ď V be a subspace of V .

(a) Show that there is a subspaceW 1 Ď V such that every vector v P V can be uniquely expressed
as a sum v “ w ` w1 with w PW and w1 PW 1.

(b) Show that every subspace W 1 Ď V as in (a) is isomorphic to V {W .
(c) Conclude that V is isomorphic to W ‘ pV {W q.

Exercise 3.43. Consider the R-vector space RN of all infinite sequences of reals. For each α P R, let
eα :“ p1, α, α2, α3, . . .q.

Show that the set teα : α P Ru is independent. This means that you can find as many independent
vectors in RN as there are real numbers!
Exercise 3.44. This exercise outlines a proof of the following theorem:
Theorem 3.45. Let R be a rectangle with side lengths 1 and x. If x is irrational, then R cannot
be tiled by finitely many squares (so that the squares have disjoint interiors and cover all of R).

Given f : RÑ R, define the f-area of a rectangle R with side lengths a and b by the formula
Af pRq :“ fpaq ¨ fpbq.

(a) Let I, J Ă R be two intervals and consider the rectangle R :“ I ˆ J . Suppose that the
intervals I and J are tiled by finitely many smaller intervals:

I “ I1 Y . . .Y In and J “ J1 Y . . .Y Jm.

Then R is tiled by the rectangles Rij :“ Ii ˆ Jj , 1 ď i ď n, 1 ď j ď m, in a grid-like fashion:

I1 I2 . . . In

J1

...

Jm

R11

R1m

R21 Rn1. . .

Rnm
...

Prove that if f : RÑ R is Q-linear, then

Af pRq “
n
ÿ

i“1

m
ÿ

j“1
Af pRijq.



LINEAR ALGEBRA 31

(b) Suppose that a rectangle R is tiled arbitrarily by finitely many rectangles Q1, . . . , Qk:

Q1

Q2

Prove that if f : RÑ R is Q-linear, then

Af pRq “
k
ÿ

i“1
Af pQiq.

(c) Show that if x P RzQ, then there is a Q-linear map f : RÑ R such that

fp1q “ 1 and fpxq “ ´1.

(d) Deduce Theorem 3.45. Hint: What can you say about the f -area of a square?

4. Dimension

4.A. The second fundamental theorem of linear algebra
The goal of this subsection is to show that any two bases in a vector space have the same size:

Theorem 4.1 (Second fundamental theorem). Let V be a vector space over a field F . If B1,
B2 Ď V are bases for V , then there is a bijection f : B1 Ñ B2.

In particular, if B1 is finite, then B2 is also finite and |B1| “ |B2|.

According to Theorem 4.1, the F -vector spaces

t0u “ F 0, F “ F 1, F 2, F 3, . . . , Fn, . . .

are pairwise non-isomorphic. Also, the vector spaces rNÑ F să8 and rRÑ F să8 are not isomorphic
to each other, because there is no bijection NÑ R (even though both N and R are infinite sets).
Together, Theorems 3.15 and 4.1 give a complete characterization of all F -vector spaces up to
isomorphism.

Lemma 4.2 (Exchange lemma). Let V be an F -vector space and let I, B Ď V . Suppose that the
set I is independent, while B is a basis for V . Then for every x P IzB, there is some y P BzI such
that the set pIztxuqY tyu is independent. Furthermore, if I is a basis for V , then so is pIztxuqY tyu.

Proof. First, we find y P BzI such that that the set Sy :“ pIztxuqY tyu is independent. Suppose,
towards a contradiction, that no such y exists. This means that for all y P BzI, the set Sy is not
independent, i.e., y P SpanpIztxuq (see Lemma 3.23). Thus, BzI Ď SpanpIztxuq. Since x R B, we
also have B X I Ď Iztxu; hence, B Ď SpanpIztxuq. Since SpanpBq “ V , we conclude that the set
Iztxu is spanning, and in particular x P SpanpIztxuq, which contradicts the independence of I.

To prove the “furthermore” part of the lemma, assume that I is a basis for V and let y P BzI be
an arbitrary element such that the set Sy is independent. We claim that Sy is also spanning, and
hence it is a basis, as desired. By definition, Iztxu Ď Sy, so we only need to show that x P SpanpSyq.
But Sy Y txu “ I Y tyu is not an independent set, so x P SpanpSyq by Lemma 3.23. �

Using the exchange lemma, it is easy to derive Theorem 4.1 in the case one of B1, B2 is finite.
Indeed, suppose that B1 contains n elements:

B1 “ tx1, x2, . . . , xnu.
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Applying the exchange lemma repeatedly, we can replace the elements of B1, one by one, by elements
of B2, producing a sequence of bases, each containing n distinct elements:

ty1, x2, . . . , xnu,
ty1, y2, . . . , xnu,

. . .
ty1, y2, . . . , ynu.

Since ty1, . . . , ynu Ď B2 and B2 itself is a basis, this means that B2 “ ty1, . . . , ynu.
It might seem that when both B1 and B2 are infinite, we need a more powerful tool than the

exchange lemma, which only treats one element of B1zB2 at a time. It turns out, however, that just
dealing with one element at a time is enough, even when the sets B1 and B2 are infinite, thanks
to Zorn’s lemma. Similar arguments based on Zorn’s lemma are often used in different parts of
mathematics.

We will need a form of Zorn’s lemma that is slightly stronger than Theorem 3.31:

Theorem 4.3 (Zorn’s lemma #2). Let F be a nonempty family of sets such that if C Ď F is a
chain, then

Ť

C P F . Then F has a maximal element.

Exercise 4.4. For a family F of sets, let F` denote the set of all chains C Ď F .
(a) Show that for every family F of sets, the set F` satisfies the assumptions (Z1), (Z2), and

(Z3) of Zorn’s lemma (in the form of Theorem 3.31).
(b) Conclude that F` has a maximal element; in other words, every family F of sets contains a

maximal chain C Ď F .
(c) Deduce Theorem 4.3.

Another tool we will need is a classical result known as the Bernstein–Cantor–Schröder theorem,
which allows one to construct a bijection between two sets out of a pair of injections:

Theorem 4.5 (Bernstein–Cantor–Schröder). Let A and B be sets. If f : AÑ B and g : B Ñ A are
injective functions, then there also exists a bijection h : AÑ B.

Proof. Define a sequence of sets B0, A0, B1, A1, B2, A2, . . . as follows:

B0 :“ Bzimpfq; An :“ gpBnq; Bn`1 :“ fpAnq.

By definition, An Ď A and Bn Ď B for all n P N. Let

A1 :“ A0 YA1 YA2 Y . . . and A2 :“ AzA1;
B1 :“ B0 YB1 YB2 Y . . . and B2 :“ BzB1.

Note that A1 Ď impgq, so we can define a function h : AÑ B by

hpaq :“
#

fpaq if a P A2;
g´1paq if a P A1.

(4.6)

This function h is a desired bijection (exercise!). �

Proof of Theorem 4.1. Let B1, B2 Ď V be two bases of V . In view of Theorem 4.5, we
just have to show that there is an injective function from B1 to B2.

An exchange is a function f with the following properties:
‚ dompfq Ď B1 and impfq Ď B2;
‚ f is injective;
‚ the sets impfq and B1zdompfq are disjoint;
‚ the set If :“ impfq Y pB1zdompfqq is independent.
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Let E be the set of all exchanges. Note that E ‰ ∅, since the empty function ∅ : ∅ Ñ ∅, whose
domain and image are both empty, is an exchange. (In particular, I∅ “ B1, so I∅ is independent.)
We wish to apply Zorn’s lemma to E to obtain a maximal exchange, and then to show that it must
be an injection B1 Ñ B2. Of course, Zorn’s lemma applies to families of sets, while E is a family of
functions, but we can view each f P E as a set by identifying f with its graph, i.e., with the set

Γf :“ tpx, yq : fpxq “ yu.

Thus, f Ď g means that dompfq Ď dompgq and gpxq “ fpxq for all x P dompfq.

Exercise 4.7. Show that if C Ď E is a chain of exchanges, then
Ť

C is an exchange.

With Exercise 4.7 in hand, we can apply Theorem 4.3 to conclude that there is a maximal
exchange f P E . Suppose, towards a contradiction, that B1zdompfq ‰ ∅ and let x be an arbitrary
element of B1zdompfq. We will show how to extend f to x; i.e., we shall construct an exchange f 1
such that f 1 Ą f and dompf 1q “ dompfq Y txu. This would contradict the maximality of f , thus
proving that dompfq “ B1, as desired. There are two cases to consider:

Case 1: x P B2. Then we can set f 1pxq :“ x, and it is not hard to check that f 1 is an exchange.
Case 2: x R B2. Then we have x P IfzB2, so we may apply the exchange lemma to the basis B2
and the independent set If to obtain y P B2zIf such that pIfztxuq Y tyu is independent. Then
we can set f 1pxq :“ y.

Hence, dompfq “ B1 and f : B1 Ñ B2 is a desired injection. �

4.B. Dimension and finite-dimensional spaces
Definition 4.8. A vector space V is called finite-dimensional if it has a finite basis, and infinite-
dimensional otherwise. The size of any basis in a finite-dimensional vector space V is called the
dimension of V , denoted dimV . Sometimes, we write dimF V instead of dimV to explicitly indicate
that we are working over F .

Example 4.9. Let F be a field and let n P N. Then the dimension of Fn is n.

Example 4.10. Let F be a field and let m, n P N. Then the dimension of MmˆnpF q, as a vector
space over F , is mn.

Example 4.11. The dimension of C as a vector space over R is dimRC “ 2, since the set t1, iu
is a basis for C over R. On the other hand, C is also a vector space over C, and dimCC “ 1. (In
general, every field is a one-dimensional vector space over itself.)

Example 4.12. As a vector space over Q, R is infinite-dimensional. The most straightforward
way to see this is by using basic set theory, which, unfortunately, falls outside the scope of this
course.14 It is fairly easy to guess an infinite subset of R that is independent over Q, but it is usually
surprisingly hard to prove that it is independent. For instance, the set

t
?
p : p is a prime numberu

is Q-linearly independent, but the proof of this fact is quite complicated. However, the independence
of the following set is easy to verify:

Exercise 4.13. Show that the set tln p : p is a prime numberu is Q-linearly independent.

Lemma 4.14. Let V be a finite-dimensional vector space and let W Ď V be a subspace. Then W
is also finite-dimensional and dimW ď dimV . Furthermore, if W ‰ V , then dimW ă dimV .

14For the initiated: every finite-dimensional Q-vector space is isomorphic to Qn for some n P N; in particular, it is
countable. On the other hand, R is well-known to be uncountable.
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Proof. Let BW Ď W be any basis for W . Since BW is an independent subset of V , there is a
basis B for V such that B Ě BW . Then

dimW “ |BW | ď |B| “ dimV,

as desired. Furthermore, if dimW “ dimV , then BW “ B, and hence W “ V . �

Exercise 4.15. Let V be a finite-dimensional vector space. Show that the size of every independent
set I Ď V is at most dimV , while the size of every spanning set S Ď V is at least dimV .

Exercise 4.16. Let V and W be finite-dimensional vector spaces over a field F . Show that
dimpV ‘W q “ dimV ` dimW.

Theorem 4.17 (Rank–null ity). Let V and W be vector spaces over a field F and let ϕ : V ÑW
be a linear function. Suppose that V is finite-dimensional. Then the spaces kerpϕq, impϕq are also
finite-dimensional, and we have

dimV “ dim kerpϕq ` dim impϕq.

Proof. By Exercise 3.42, V is isomorphic to kerpϕq ‘ pV { kerpϕqq. By Exercise 2.40, V { kerpϕq is
isomorphic to impϕq. Thus, V is isomorphic to kerpϕq‘ impϕq, and we are done by Exercise 4.16. �

Corollary 4.18. Let V be a finite-dimensional vector space and let ϕ : V Ñ V be a linear function.
The following statements are equivalent:

(1) ϕ is injective;
(2) ϕ is surjective;
(3) dim kerpϕq “ 0;
(4) dim impϕq “ dimV .

Proof. The equivalences (1)ðñ (3) and (2)ðñ (4) follow from Exercise 3.2 (the second of these
also relies on Lemma 4.14). By Theorem 4.17, dim kerpϕq “ dimV ´ dim impϕq, so dim kerpϕq “ 0
if and only if dimV “ dim impϕq, which proves (3) ðñ (4). �

Remark 4.19. The equivalence (1)ðñ (2) in Corollary 4.18 may fail for infinite-dimensional V . For
example, consider the linear function ϕ : FN Ñ FN given by ϕpx0, x1, x2, . . .q :“ px1, x2, x3, . . .q. Then
ϕ is surjective but not injective. Similarly, the function ψ : FN Ñ FN given by ψpx0, x1, x2, . . .q :“
p0, x0, x1, . . .q is injective but not surjective.

4.C. Using dimension: algebraic numbers
Recall that a complex number a P C is algebraic if there is a nonzero polynomial ppxq with rational
coefficients such that ppaq “ 0. (For more details, see Example 1.23.) Denote the set of all algebraic
numbers by Q. We have now the tools to prove the following theorem, which was stated in §1.C:

Theorem 1.25. Q is a subfield of C.

Lemma 4.20. For α P C, let Sα :“ tαk : k P Nu and Vα :“ SpanQpSαq. Then α is algebraic if and
only if the Q-vector space Vα is finite-dimensional.

Proof. Suppose that Vα is finite-dimensional. Then Sα is not an infinite independent set, and
hence there exists a nontrivial linear combination of elements of Sα with rational coefficients that
evaluates to zero; i.e., we can write

a0 ¨ 1` a1 ¨ α` a2 ¨ α
2 ` ¨ ¨ ¨ ` an ¨ α

n “ 0,
for some n P N, a0, . . . , an P Q, and an ‰ 0. Thus, α is a root of a nonzero polynomial with rational
coefficients, as desired. Conversely, suppose that

a0 ` a1α` a2α
2 ` ¨ ¨ ¨ ` anα

n “ 0,
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for some n P N, a0, . . . , an P Q, and an ‰ 0. We claim that then

Vα “ SpanQpt1, α, α2, . . . , αn´1uq,

and, in particular, dimQ Vα ď n. It suffices to show that αk P SpanQpt1, α, . . . , αn´1uq for all k P N.
The proof is by induction on k. For k ď n´ 1 the statement is clear; furthermore, we have

αn “ ´
a0
an
´
a1
an
α´

a2
an
α2 ´ ¨ ¨ ¨ ´

an´1
an

αn´1 P SpanQpt1, α, . . . , αn´1uq. (4.21)

We need to show that if αk P SpanQpt1, α, . . . , αn´1uq, then αk`1 P SpanQpt1, α, . . . , αn´1uq. Write

αk “ c0 ` c1α` c2α
2 ` ¨ ¨ ¨ ` cn´1α

n´1.

Then αk`1 P SpanQpt1, α, . . . , αn´1uq since

αk`1 “ α ¨ αk “ c0α` c1α
2 ` ¨ ¨ ¨ ` cn´2α

n´1
loooooooooooooooooomoooooooooooooooooon

P SpanQptα,...,α
n´1uq

` cn´1α
n.

looomooon

PSpanQpt1,α,...,αn´1uq by (4.21)

�

Lemma 4.22. Let S, T Ď C and let ST :“ tst : s P S, t P T u. If the Q-vector spaces SpanQpSq
and SpanQpT q are finite-dimensional, then so is SpanQpST q; moreover,

dim SpanQpST q ď pdim SpanQpSqq ¨ pdim SpanQpT qq.

Proof. Suppose that ts1, . . . , snu Ď S and tt1, . . . , tmu Ď T are bases for SpanQpSq and SpanQpT q,
respectively. We claim that

SpanQpST q “ SpanQptsitj : 1 ď i ď n, 1 ď j ď muq,

and thus dim SpanQpST q ď nm, as desired. It suffices to show that for all s P S and t P T ,

st P SpanQptsitj : 1 ď i ď n, 1 ď j ď muq.

To that end, write

s “
n
ÿ

i“1
aisi and t “

m
ÿ

j“1
bjtj ,

where the coefficients ai, 1 ď i ď n, and bj , 1 ď j ď m, are rational. Then

st “

˜

n
ÿ

i“1
aisi

¸˜

m
ÿ

j“1
bjtj

¸

“

n
ÿ

i“1

m
ÿ

j“1
paibjqpsitjq P SpanQptsitj : 1 ď i ď n, 1 ď j ď muq. �

Proof of Theorem 1.25. The only things that require verification are:
‚ Q is closed under addition;
‚ Q is closed under multiplication;
‚ Q is closed under taking additive inverses;
‚ Q is closed under taking multiplicative inverses of nonzero elements.

Perhaps somewhat surprisingly, the latter two bullet points are relatively straightforward to check,
while the former two are somewhat tricky. Indeed, suppose that α P Qzt0u. Then we can write

a0 ` a1α` a2α
2 ` ¨ ¨ ¨ ` anα

n “ 0, (4.23)

for rational a0, . . . , an P Q, not all of which are zero. Dividing both sides of (4.23) by αn, we obtain

an ` an´1α
´1 ` an´2pα

´1q2 ` ¨ ¨ ¨ ` a0pα
´1qn “ 0,

and hence α´1 is also algebraic. Additive inverses can be treated in a similar fashion.

Exercise 4.24. Show that Q is closed under taking additive inverses.
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Now we proceed to show that Q is closed under addition. Let α, β P Q. By Lemma 4.20, this
means that the associated Q-vector spaces

Vα “ SpanQpSαq and Vβ “ SpanQpSβq

are finite-dimensional. We wish to show that α` β P Q, i.e., that the space

Vα`β “ SpanQpSα`βq

is also finite-dimensional. Observe that for each k P N, we have

pα` βqk “
k
ÿ

i“0

ˆ

k

i

˙

αiβk´i P SpanQptα
iβj : i, j P Nuq “ SpanQpSαSβq,

where the product SαSβ is defined as in Lemma 4.22. Therefore, Vα`β Ď SpanQpSαSβq; but the
space SpanQpSαSβq is finite-dimensional by Lemma 4.22, and hence we are done.

Finally, the proof that Q is closed under multiplication is left as an exercise.

Exercise 4.25. Show that Q is closed under multiplication. �

It is worthwhile to go over a concrete example to see what the proof of Theorem 1.25 means
computationally. Suppose that α, β P C satisfy

1` α` α2 “ 0 and ´ 1´ 2β ` β2 “ 0. (4.26)

Then α and β and algebraic and, by Theorem 1.25, so is their sum α` β. How do we actually find
a polynomial ppxq with rational coefficients such that ppα ` βq “ 0? The strategy is to express
the powers of α` β as linear combinations of the four monomials 1, α, β, and αβ, using (4.26) to
eliminate all the higher powers of α and β. Then we will be able to find a nontrivial linear relation
between the five expressions 1, α ` β, pα ` βq2, pα ` βq3, and pα ` βq4, showing that α ` β is a
root of a polynomial of degree at most 4.

To begin with, we repeatedly apply (4.26) to express the first five powers of α (resp. β) as linear
combinations of 1 and α (resp. 1 and β):

α0 “ 1 β0 “ 1
α1 “ α β1 “ β
α2 “ ´1´ α β2 “ 1` 2β
α3 “ ´α´ p´1´ αq “ 1 β3 “ β ` 2p1` 2βq “ 2` 5β
α4 “ α β4 “ 2β ` 5p1` 2βq “ 5` 12β

Now we compute:
pα` βq0 “ 1, pα` βq1 “ α` β,

pα` βq2 “ α2 ` 2αβ ` β2 “ p´1´ αq ` 2αβ ` p1` 2βq “ ´α` 2β ` 2αβ,

pα` βq3 “ α3 ` 3α2β ` 3αβ2 ` β3

“ 1` 3p´1´ αqβ ` 3αp1` 2βq ` p2` 5βq
“ 3` 3α` 2β ` 3αβ,

pα` βq4 “ α4 ` 4α3β ` 6α2β2 ` 4αβ3 ` β4

“ α` 4β ` 6p´1´ αqp1` 2βq ` 4αp2` 5βq ` p5` 12βq
“ ´1` 3α` 4β ` 8αβ.
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We can now form a matrix whose rows correspond to the monomials 1, α, β, αβ and whose columns
correspond to the powers of α`β, from 0 to 4, that contains the coefficients of the above expressions:

A :“

»

—

—

–

1 0 0 3 ´1
0 1 ´1 3 3
0 1 2 2 4
0 0 2 3 8

fi

ffi

ffi

fl

.

To find a desired polynomial p, we just need to find a nontrivial linear combination of the columns
of A that evaluates to zero, which requires solving a system of 4 homogeneous linear equations in 5
variables. This is a computationally tractable problem; for instance, we find that

7

»

—

—

–

1
0
0
0

fi

ffi

ffi

fl

` 2

»

—

—

–

0
1
1
0

fi

ffi

ffi

fl

´

»

—

—

–

0
´1
2
2

fi

ffi

ffi

fl

´ 2

»

—

—

–

3
3
2
3

fi

ffi

ffi

fl

`

»

—

—

–

´1
3
4
8

fi

ffi

ffi

fl

“

»

—

—

–

0
0
0
0

fi

ffi

ffi

fl

,

and hence
7` 2pα` βq ´ pα` βq2 ´ 2pα` βq3 ` pα` βq4 “ 0.

Exercise 4.27. Show that if a complex number a P C is a root of a nonzero polynomial with
algebraic coefficients, then a is itself algebraic.

Exercise 4.28. When K is a field and F Ď K is a subfield of K, we say that K is an extension of
F . Recall that if K is an extension of F , then K can be naturally viewed as a vector space over F .
A field extension K Ě F is called finite if the dimension of K, as an F -vector space, is finite. A
field extension K Ě F is algebraic if for each element a P K, there is a nonzero polynomial ppxq
with coefficients in F such that ppaq “ 0. Thus, C is a finite extension of R and Q is an algebraic
extension of Q.

Let F be a field. Show that every finite extension of F is algebraic.

Extra exercises for Section 4
Exercise 4.29. Fix distinct a1, . . . , an P R and let Pn´1pRq denote the set of all polynomials ppxq
with real coefficients in a single variable x of degree at most n´ 1.

(a) Show that Pn´1pRq is an R-vector space. What is its dimension?
(b) For each 1 ď i ď n, let qipxq be the polynomial

qipxq :“ px´ a1q ¨ ¨ ¨ px´ ai´1qpx´ ai`1q ¨ ¨ ¨ px´ anq (n´ 1 factors).
Let Q :“ tqi : 1 ď i ď nu. Show that Q is an independent subset of Pn´1pRq. Hint: What
would happen to a linear combination of elements of Q if we plug in ai instead of x?

(c) Conclude that for every p P Pn´1pRq, there exist coefficients c1, . . . , cn P R such that
ppxq

px´ a1q ¨ ¨ ¨ px´ anq
“

c1
x´ a1

` ¨ ¨ ¨ `
cn

x´ an
.

This fact is used in calculus to find antiderivatives of rational functions.

Exercise 4.30. Show that if F is a finite field, then the size of F is a power of a prime number.
Hint: Use the result of Exercise 1.45.

5. Spaces of linear functions
5.A. The dual space

Definition 5.1. Let V , W be vector spaces over a field F . We use LinpV,W q to denote the set of all
linear functions f : V ÑW . Note that LinpV,W q is a subspace of W V , viewed as an F -vector space
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under pointwise addition and scaling. In the special case when W “ F , we set V ˚ :“ LinpV, F q and
call V ˚ the dual space of V .

Let B Ď V be a basis for an F -vector space V . For each x P B, let x˚B : V Ñ F be the unique
linear function such that for all y P B,

x˚Bpyq “

#

1 if y “ x;
0 if y ‰ x.

Explicitly, for each v P V , the value x˚Bpvq is determined as follows. Write v as a linear combination
of the elements of the basis B:

v “
ÿ

yPB

cpyq ¨ y,

where c P rB Ñ F să8. Then we have

x˚Bpvq “
ÿ

yPB

cpyq ¨ x˚Bpyq “ cpxq,

that is, x˚Bpvq is equal to the coefficient of x in the unique expansion of v as a linear combination of
the elements of B. In other words, we can write

v “
ÿ

xPB

x˚Bpvq ¨ x. (5.2)

Lemma 5.3. Let V be a finite-dimensional vector space over a field F and let B Ď V be a basis
for V . Then B˚ :“ tx˚B : x P Bu is a basis for V ˚, called the dual basis corresponding to B.

Proof. First, we show that B˚ is independent; this is true regardless of whether V is finite-
dimensional or not. Let c P rB Ñ F să8 and suppose that

ÿ

xPB

cpxq ¨ x˚B “ 0. (5.4)

Take any y P B and plug it into (5.4); we then obtain

0 “
ÿ

xPB

cpxq ¨ x˚Bpyq “ cpyq,

i.e., cpyq “ 0 for all y P B, as desired.
Now we show that SpanpB˚q “ V ˚. To that end, let f P V ˚. We claim that

f “
ÿ

xPB

fpxq ¨ x˚B. (5.5)

Since the set B is finite, the right-hand side of (5.5) is a valid linear combination, and hence (5.5)
implies f P SpanpB˚q. To prove (5.5), we have to show that f agrees with the right-hand side of
(5.5) when applied to each vector v P V . And indeed, by (5.2), we have

fpvq “ f

˜

ÿ

xPB

x˚Bpvq ¨ x

¸

“
ÿ

xPB

x˚Bpvq ¨ fpxq,

which precisely coincides with the right-hand side of (5.5) applied to v. �

Remark 5.6. The conclusion of Lemma 5.3 fails if V is infinite-dimensional. Consider, for example,
the space rN Ñ F să8 of all infinite sequences of elements of F with only finitely many nonzero
entries. The set B “ ten : n P Nu is a basis for rNÑ F să8, where en “ penp0q, enp1q, . . .q denotes
the sequence such that

enpiq “

#

1 if i “ n;
0 if i ‰ n.
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The corresponding elements of prNÑ F să8q˚ are the functions e˚n : rNÑ F să8 Ñ F given by

e˚npx0, x1, . . .q :“ xn.

Now consider the linear function σ : rNÑ F să8 Ñ F given by

σpx0, x1, . . .q :“ x0 ` x1 ` ¨ ¨ ¨ . (5.7)

The right-hand side of (5.7) is a well-defined summation, since only finitely many of the entries x0,
x1, . . . are nonzero. It may be tempting to write

σ “ e˚0 ` e
˚
1 ` ¨ ¨ ¨ , (5.8)

but the expression on the right-hand side of (5.8) is not a valid linear combination; in fact, we claim
that σ R SpanpB˚q. Indeed, if f P SpanpB˚q, then f can be written as a finite linear combination of
elements of B˚, so there is m P N such that

f “ a0 ¨ e
˚
0 ` ¨ ¨ ¨ ` am ¨ e

˚
m.

Then for all n ą m, we have

fpenq “ a0 ¨ e
˚
0penq ` ¨ ¨ ¨ ` am ¨ e

˚
mpenq “ 0.

On the other hand, we have σpenq “ 1 for all n P N.

Exercise 5.9. Show that if V is an infinite-dimensional vector space and B Ď V is a basis for V ,
then the set B˚ :“ tx˚B : x P Bu is never a basis for V ˚.

Corollary 5.10. If V is a finite-dimensional vector space, then V is isomorphic to V ˚. �

Again, Corollary 5.10 fails for infinite-dimensional vector spaces.

Exercise 5.11. Let F be a field and letX be an arbitrary set. Consider the vector space rX Ñ F să8

over F . Show that the dual space prX Ñ F să8q˚ is isomorphic to FX .

Example 5.12. Consider the n-dimensional F -vector space Fn. By Corollary 5.10, the dual space
pFnq˚ is also isomorphic to Fn. An explicit isomorphism can be obtained by assigning to each tuple
pa1, . . . , anq P F

n the linear map Fn Ñ F given by px1, . . . , xnq ÞÑ a1x1 ` ¨ ¨ ¨ ` anxn.

5.B. The double dual
Let V be a vector space over a field F . The space V ˚˚ :“ pV ˚q˚ is called the double dual of V . Let
ι : V Ñ V ˚˚ be the map that sends each x P V to the linear function ιpxq : V ˚ Ñ F given by

pιpxqqpfq :“ fpxq for all f P V ˚.

Exercise 5.13. Show that the function ιpxq : V ˚ Ñ F is indeed linear.

Exercise 5.14. Show that the map ι : V Ñ V ˚˚ is an embedding; that is, it is a linear injection.

If V is finite-dimensional, then, by Corollary 5.10, we have a chain of equalities

dimV “ dimV ˚ “ dimV ˚˚.

Hence, the injective linear map ι : V Ñ V ˚˚ must also be surjective, and thus, it is an isomorphism:

Lemma 5.15. If V is a finite-dimensional vector space, then ι : V Ñ V ˚˚ is an isomorphism. �

There is an important distinction between Corollary 5.10 and Lemma 5.15. While Corollary 5.10
asserts the existence of an isomorphism V Ñ V ˚, constructing such an isomorphism requires choosing
a basis for V , and the result essentially depends on this choice. On the contrary, Lemma 5.15
provides a “canonical” isomorphism V Ñ V ˚˚, namely ι, independent of any auxiliary choices.
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5.C. Annihilators
Definition 5.16. Let V be an F -vector space and let S Ď V . The annihilator of S is the set

AnnpSq :“ tf P V ˚ : S Ď kerpfqu.
Exercise 5.17. Show that AnnpSq is a subspace of V ˚.
Lemma 5.18. Let V be a vector space over a field F and let W Ď V be a subspace. Then

W “ tx P V : fpxq “ 0 for all f P AnnpW qu. (5.19)
Proof. Let W 1 denote the right-hand side of (5.19). It is clear that W ĎW 1. To establish the
opposite inclusion, consider any x P V zW . Let BW ĎW be a basis for W . Since the set BW Y txu
is independent, it can be extended to a basis for V . This means that any assignment BW Ytxu Ñ F
can be extended to a linear function V Ñ F . In particular, there is f P V ˚ such that fpxq “ 1 while
fpwq “ 0 for all w P BW . Then f P AnnpW q and fpxq ‰ 0, and thus x RW 1. �

Corollary 5.20 (Capelli–Fontené–Frobenius–Kronecker–Rouché–. . . ). Let V be a vector space over
a field F and let X Ď V . The following statements are equivalent for a vector v P V :

(1) v R SpanpXq;
(2) there is f P V ˚ such that fpxq “ 0 for all x P X, while fpvq ‰ 0.

Exercise 5.21. Deduce Corollary 5.20 from Lemma 5.18.
Corollary 5.20 is important enough to have a name; furthermore, it has many different names

depending on where you are. In particular, it is called
‚ Rouché–Capelli theorem in Italy and English-speaking countries;
‚ Kronecker–Capelli theorem in Russia and Poland;
‚ Rouché–Fontené theorem in France;
‚ Rouché–Frobenius theorem in Spain and Latin America.

The following result is a simple (and somewhat facetious) application of Corollary 5.20. The
game Lights Out is played as follows. Let G “ pV,Eq be a finite graph15. Suppose that at each
vertex of G, there is a light bulb that can be in one of the two states: on or off. Each vertex of G
is equipped with a light switch. Flicking the switch at a vertex u P V simultaneously changes the
states of the light bulbs at u and all the vertices adjacent to u. At the start of the game, all the
lights are off. The goal is to turn all the lights on in finitely many moves.16

Theorem 5.22 (Lights Out). For every finite graph G “ pV,Eq, it is possible to turn all the
lights on using the rules of Lights Out.
Remark 5.23. It is important that our goal is to turn all the lights on. For example, if G is the
4-vertex graph shown below, then it is impossible to turn on precisely one light bulb:

Exercise 5.24. Show that if G is the graph from Remark 5.23, then it is impossible to turn on
precisely one light bulb. More generally, show that if every vertex of G has odd degree, then it
is impossible to turn on an odd number of light bulbs. (Solving this exercise may be easier after
reading the proof of Theorem 5.22 given below.)

15By a graph here we mean a simple graph, i.e., one in which no vertex is adjacent to itself and every pair of
vertices is joined by at most one edge.

16As the name suggests, the original version involves turning all the lights off, but the two versions are equivalent.
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Before proving Theorem 5.22, let us quickly review some graph-theoretic notation. Let G “ pV,Eq
be a finite graph. For a vertex v P V , let NGpvq denote the neighborhood of v in G, i.e., the set of
all vertices u P V that are adjacent to v:

NGpvq :“ tu P V : uv P Eu.

The degree of a vertex v is the size of its neighborhood: degGpvq :“ |NGpvq|.

Exercise 5.25 (Handshake lemma). Let G “ pV,Eq be a finite graph. Show that
ÿ

vPV

degGpvq “ 2|E|.

Conclude that the number of vertices of odd degree in G is even.

Finally, for a subset U Ď V , the subgraph of G induced by U , denoted GrU s, is the graph with
vertex set U in which two vertices are adjacent if and only if they are adjacent in G (see Fig. 4).

G

U

GrU s

Figure 4. Induced subgraphs

Proof of Theorem 5.22. To turn this into a linear algebra problem, we represent each state
of the lights by a vector x P FV2 such that for all u P V ,

xpuq “

#

1 if the light at u is on;
0 if the light at u is off.

For each v P V , let sv P FV2 be the vector given by

svpuq :“
#

1 if u “ v or u P NGpvq;
0 otherwise.

Also, let e :“ p1, . . . , 1q P FV2 be the vector all of whose entries are 1. The key observation is that,
since we are working modulo 2, flicking the switch at a vertex v P V results in adding sv to the
vector x P FV2 representing the current state of the lights. This has two consequences, which are
otherwise not entirely obvious:

‚ the order of switches does not affect the resulting arrangement of lights; and
‚ it is never necessary to flick the same switch more than once.

Our goal is to show that for some v1, . . . , vk P V , we have e “ sv1 ` ¨ ¨ ¨ ` svk
, or, equivalently, e is

in the span of tsv : v P V u. Thanks to Corollary 5.20, it suffices to prove that whenever f P pFV2 q˚
satisfies fpsvq “ 0 for all v P V , then fpeq “ 0 as well. Using the theory developed in §5.A, we can
describe all linear functions f P pFV2 q˚ explicitly:

Exercise 5.26. Let f : FV2 Ñ F2 be a linear function. Show that there is a subset U Ď V such that

fpxq “
ÿ

uPU

xpuq for all x P FV2 .
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Therefore, our problem can now be restated as follows: Suppose that U Ď V is a subset such that
ÿ

uPU

svpuq “ 0 for all v P V. (5.27)

From this, we wish to deduce that
ÿ

uPU

epuq “
ÿ

uPU

1 “ |U | “ 0 pmod 2q,

i.e., the size of U is even. To this end, consider the induced subgraph G1 :“ GrU s. For each v P U ,
ÿ

uPU

svpuq “ 1
loomoon

the contribution of v

` |U XNGpvq|
loooooomoooooon

the contribution of the
neighbors of v

“ 1` |NG1pvq| “ 1` degG1pvq,

and hence, by (5.27), the degree of every vertex in G1 is odd. Hence, by the handshake lemma, the
number of vertices of G1—i.e., the size of U—is even, as desired. �

5.D. Dual functions
Definition 5.28. Let V , W be vector spaces over a field F and let ϕ : V ÑW be a linear function.
The dual of ϕ is the function ϕ˚ : W ˚ Ñ V ˚ given by

ϕ˚pfq :“ f ˝ ϕ for all f PW ˚.

Here ˝ denotes composition of functions, as shown on the diagram below:

V W F
ϕ f

f ˝ ϕ “ ϕ˚pfq

Example 5.29. If ϕ : RÑ R is given by ϕpxq “ 2x, then for every f P R˚, ϕ˚pfq is the function

RÑ R : x ÞÑ fp2xq.

Exercise 5.30. Let V , W be vector spaces over a field F .

(a) Show that if ϕ P LinpV,W q and f P W ˚, then the function ϕ˚pfq : V Ñ F is linear (and
hence it indeed belongs to V ˚, as asserted in Definition 5.28).

(b) Show that if ϕ P LinpV,W q, then the dual map ϕ˚ : W ˚ Ñ V ˚ is linear.
(c) Show that the function LinpV,W q Ñ LinpW ˚, V ˚q : ϕ ÞÑ ϕ˚ is linear.

Exercise 5.31. Fix a field F . For an F -vector space V , let idV : V Ñ V denote the corresponding
identity map.

(a) Let V be an F -vector space. Show that pidV q˚ “ idV ˚ .
(b) Let U , V , and W be F -vector spaces and let ϕ : U Ñ V and ψ : V Ñ W be linear maps.

Show that pψ ˝ ϕq˚ “ ϕ˚ ˝ ψ˚. This situation is illustrated by the following diagram:
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U V Wϕ ψ

ψ ˝ ϕ

U˚ V ˚ W ˚
ψ˚ϕ˚

pψ ˝ ϕq˚ “ ϕ˚ ˝ ψ˚

If you wish to impress your friends at a party, you can summarize the above statements as follows:
Taking duals is a contravariant functor from the category of F -vector spaces and
linear maps to itself.

Exercise 5.32. Let V , W be vector spaces over a field F .
(a) Show that the function LinpV,W q Ñ LinpW ˚, V ˚q : ϕ ÞÑ ϕ˚ is injective.
(b) Show that if W is finite-dimensional, then the function LinpV,W q Ñ LinpW ˚, V ˚q : ϕ ÞÑ ϕ˚

is surjective, and hence it is an isomorphism of F -vector spaces.

Lemma 5.33. Let V , W be vector spaces over a field F and let ϕ : V Ñ W be a linear function.
Then kerpϕ˚q “ Annpimpϕqq.

Proof. For each f PW ˚, we have

f P kerpϕ˚q ðñ ϕ˚pfq “ 0 ðñ pϕ˚pfqqpvq “ 0 for all v P V
ðñ fpϕpvqq “ 0 for all v P V
ðñ fpwq “ 0 for all w P impϕq
ðñ f P Annpimpϕqq. �

Theorem 5.34. Let V , W be vector spaces over a field F and let ϕ : V ÑW be a linear function.
Then the F -vector spaces impϕ˚q and pimpϕqq˚ are isomorphic.

Proof. From Lemma 5.33 and the first isomorphism theorem, it follows that

impϕ˚q – W ˚{ kerpϕ˚q “ W ˚{Annpimpϕqq.

Let ρ : W ˚ Ñ pimpϕqq˚ be the function given by

ρpfq :“ f |impϕq for all f PW ˚,

where f |impϕq denotes the restriction of f to the subset impϕq of its domain. It is easy to verify that
ρ is linear. Also, ρ is surjective, since every linear function impϕq Ñ F can be extended to a linear
function W Ñ F (exercise!). Finally, kerpρq “ Annpimpϕqq (this is essentially the definition of the
annihilator). Hence, by the first isomorphism theorem again,

pimpϕqq˚ “ impρq – W ˚{ kerpρq “ W ˚{Annpimpϕqq,

and we are done. �

Corollary 5.35. Let V , W be vector spaces over a field F and let ϕ : V ÑW be a linear function.
If the space impϕq is finite-dimensional, then dim impϕq “ dim impϕ˚q.

Proof. By Corollary 5.10 and Theorem 5.34, dim impϕq “ dimpimpϕqq˚ “ dim impϕ˚q. �
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5.E. Representation of linear functions by matrices

The introduction of numbers as coordinates . . . is an
act of violence.

Hermann Weyl

In this subsection we discuss a very convenient way of encoding linear functions via matrices. To
start with, we need to introduce the somewhat technical notion of an ordered basis. Let V be a vector
space over a field F . We say that a tuple px1, . . . , xnq P V

n is independent if the set tx1, . . . , xnu
is independent and the vectors x1, . . . , xn are pairwise distinct. (So, for example, if x P V zt0u,
then the set tx, xu “ txu is independent, while the pair px, xq is not.) An ordered basis for V is
an independent tuple px1, . . . , xnq such that Spanptx1, . . . , xnuq “ V ; equivalently, tx1, . . . , xnu is a
basis and x1, . . . , xn are distinct.

Exercise 5.36. Show that a tuple px1, . . . , xnq is independent if and only if for all a1, . . . , an P F ,
a1x1 ` ¨ ¨ ¨ ` anxn “ 0 ðñ a1 “ ¨ ¨ ¨ “ an “ 0.

Let X “ px1, . . . , xnq be an ordered basis for V (in particular, dimV “ n). Then for each v P V ,
there is a unique sequence of coefficients a1, . . . , an P F such that

v “ a1x1 ` ¨ ¨ ¨ ` anxn.

We put these coefficients together in a column matrix and define rvsX PMnˆ1pF q by

rvsX :“

»

—

–

a1
...
an

fi

ffi

fl

.

The function V ÑMnˆ1pF q : v ÞÑ rvsX is an isomorphism of F -vector spaces.
Now let V andW be two F -vector spaces and let ϕ P LinpV,W q. If X “ px1, . . . , xnq is an ordered

basis for V and Y “ py1, . . . , ymq is an ordered basis for W , then we let rϕsX,Y PMmˆnpF q be the
m-by-n matrix such that for each 1 ď i ď n, the i-th column of rϕsX,Y is rϕpxiqsY ; in symbols,

rϕsX,Y :“
“

rϕpx1qsY ¨ ¨ ¨ rϕpxnqsY
‰

.

Again, the map LinpV,W q ÑMmˆnpF q : ϕ ÞÑ rϕsX,Y is an isomorphism of F -vector spaces.

Example 5.37. Let P2pRq be the R-vector space of polynomials with real coefficients in a single
variable x of degree at most 2. Then X “ p1, x, x2q is an ordered basis for this space. Consider the
linear function B : P2pRq Ñ P2pRq that sends each polynomial p P P2pRq to its derivative p1. Since
Bp1q “ 0, Bpxq “ 1, and Bpx2q “ 2x, we obtain that

rBsX,X “

»

–

0 1 0
0 0 2
0 0 0

fi

fl .

Exercise 5.38. If dimV “ n and dimW “ m, then what is dim LinpV,W q?

Exercise 5.39. Let V be a vector space over a field F and let X “ px1, . . . , xnq be an ordered basis
for V . Show that if idV : V Ñ V denotes the identity function, then ridV sX,X “ InpF q.

Exercise 5.40 (important). Let V and W be vector spaces over a field F and let ϕ P LinpV,W q.
Let X “ px1, . . . , xnq and Y “ py1, . . . , ymq be ordered bases for V and W , respectively. Show that

rϕpvqsY “ rϕsX,Y rvsX for all v P V.
(Juxtaposition on the right-hand side indicates matrix multiplication.) This is the reason why matrix
multiplication is defined the way it is.
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In view of Exercise 5.40, it makes sense to introduce the following notational convention. Let
A PMmˆnpF q. Then A defines a linear map TA : Mnˆ1pF q ÑMmˆ1pF q : v ÞÑ Av, and, according
to Exercise 5.40, every linear function between two finite-dimensional vector spaces is “essentially”
of this form. We often conflate TA with A; in particular, we write impAq and kerpAq to indicate the
image and the kernel of TA, respectively.

Exercise 5.41. Let A PMmˆnpF q be an m-by-n matrix over a field F . Let the columns of A be
x1, . . . , xn. Show that impAq “ Spanptx1, . . . , xnuq.

Lemma 5.42. Let U , V , W be F -vector spaces and let ϕ : U Ñ V and ψ : V ÑW be linear maps.
Let X “ px1, . . . , xnq, Y “ py1, . . . , ymq, and Z “ pz1, . . . , zkq be ordered bases for U , V , and W ,
respectively. Then

rψ ˝ ϕsX,Z “ rψsY,ZrϕsX,Y .

Proof. Note that for all A PMkˆmpF q, B PMmˆnpF q and for each 1 ď i ď n, the i-th column
of the matrix product AB is equal to A times the i-th column of B. In particular, we have

the i-th column of rψsY,ZrϕsX,Y “ rψsY,Z ¨ pthe i-th column of rϕsX,Y q
“ rψsY,ZrϕpxiqsY

rby Exercise 5.40s “ rpψpϕpxiqqqsZ

“ rpψ ˝ ϕqpxiqsZ

“ the i-th column of rψ ˝ ϕsX,Z . �

Lemma 5.43. Let V and W be F -vector spaces and let ϕ P LinpV,W q. Let X “ px1, . . . , xnq
and Y “ py1, . . . , ymq be ordered bases for V and W , respectively, and let X˚ “ px˚1 , . . . , x˚nq and
Y ˚ “ py˚1 , . . . , y

˚
mq be the corresponding dual bases for V ˚ and W ˚. Then

rϕ˚sY ˚,X˚ “ prϕsX,Y q
J .

Example 5.44. Before proving Lemma 5.43, let us consider a simple concrete example. Let
B : P2pRq Ñ P2pRq be the linear function that sends each polynomial p P P2pRq to its derivative p1
(as in Example 5.37). Using the ordered basis X “ p1, x, x2q, we obtain

rBsX,X “

»

–

0 1 0
0 0 2
0 0 0

fi

fl .

Let the dual basis be X˚ “ pf0, f1, f2q. For a polynomial a` bx` cx2, we have

f0pa` bx` cx
2q “ a;

f1pa` bx` cx
2q “ b;

f2pa` bx` cx
2q “ c.

Thus,

pB˚pf0qqpa` bx` cx
2q “ pf0 ˝ Bqpa` bx` cx

2q “ f0pb` 2cxq “ b;
pB˚pf1qqpa` bx` cx

2q “ pf1 ˝ Bqpa` bx` cx
2q “ f1pb` 2cxq “ 2c;

pB˚pf2qqpa` bx` cx
2q “ pf2 ˝ Bqpa` bx` cx

2q “ f2pb` 2cxq “ 0.

Therefore, we conclude that

B˚pf0q “ f1, B˚pf1q “ 2f2, and B˚pf2q “ 0,
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and hence

rB˚sX˚,X˚ “

»

–

0 0 0
1 0 0
0 2 0

fi

fl “

»

–

0 1 0
0 0 2
0 0 0

fi

fl

J

“ prBsX,Xq
J,

as predicted by Lemma 5.43.

Proof of Lemma 5.43. Our aim is to show that rϕsX,Y pi, jq “ rϕ˚sY ˚,X˚pj, iq for all 1 ď i ď
m, 1 ď j ď n. Let us first compute rϕsX,Y pi, jq. By definition, the j-th column of rϕsX,Y if rϕpxjqsY .
Recall that for each w PW , we have

w “

m
ÿ

i“1
y˚i pwq ¨ yi (see (5.2)), hence rwsY “

»

—

–

y˚1 pwq
...

y˚mpwq

fi

ffi

fl

.

Therefore, the j-th column of rϕsX,Y is

rϕpxjqsY “

»

—

–

y˚1 pϕpxjqq
...

y˚mpϕpxjqq

fi

ffi

fl

,

and thus rϕsX,Y pi, jq “ y˚i pϕpxjqq “ py
˚
i ˝ ϕqpxjq. Now we need to compute rϕ˚sY ˚,X˚pj, iq. Again,

by definition, the i-th column of rϕ˚sY ˚,X˚ is rϕ˚py˚i qsX˚ . For each f P V ˚, we have

f “
n
ÿ

j“1
fpxjq ¨ x

˚
j (see (5.5)), hence rf sX˚ “

»

—

–

fpx1q
...

fpxnq

fi

ffi

fl

,

and so the i-th column of rϕ˚sY ˚,X˚ is

rϕ˚py˚i qsX˚ “

»

—

–

pϕ˚py˚i qqpx1q
...

pϕ˚py˚i qqpxnq

fi

ffi

fl

.

Thus, rϕ˚sY ˚,X˚pj, iq “ pϕ˚py˚i qqpxjq “ py˚i ˝ ϕqpxjq “ rϕsX,Y pi, jq, and we are done. �

Definition 5.45. Let F be a field and let A PMmˆnpF q. The rank of A is rankpAq :“ dim impAq.

Exercise 5.46. Let A PMmˆnpF q be an m-by-n matrix over a field F . Show that the rank of A is
equal to the largest number of independent columns of A.

Corollary 5.47. Let A PMmˆnpF q be an m-by-n matrix over a field F . Then rankpAq “ rankpAJq.

Proof. Follows immediately from Corollary 5.35 and Lemma 5.43. �

Example 5.48. Here’s a simple application of Corollary 5.47. Let α1, . . . , αn P R be distinct real
numbers and define

vi :“
“

1 αi α2
i ¨ ¨ ¨ αn´1

i

‰J
PMnˆ1pRq.

We claim that the tuple pv1, . . . , vnq is independent. If we were to show this directly, we would have
to consider the equation

c1v1 ` ¨ ¨ ¨ ` cnvn “ 0,
which is equivalent to

c1α
k
1 ` ¨ ¨ ¨ ` cnα

k
n “ 0 for all 0 ď k ď n´ 1. (5.49)

From this, we have to deduce that c1 “ ¨ ¨ ¨ “ cn “ 0. Unfortunately, equations (5.49) involve
all of the variables α1, . . . , αn at once and are hard to tackle. To simplify the problem, we first
apply Corollary 5.47. Let A be the n-by-n matrix whose columns are v1, . . . , vn and let the rows
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of A be w0, . . . , wn´1, so wk “
“

αk1 αk2 ¨ ¨ ¨ αkn
‰

. By Corollary 5.47, the tuple pv1, . . . , vnq is
independent if and only if the tuple pw0, . . . , wn´1q is. Thus, we need to consider the equation

c0w0 ` ¨ ¨ ¨ ` cn´1wn´1 “ 0,
which is equivalent to

c0 ` c1αi ` ¨ ¨ ¨ ` cn´1α
n´1
i “ 0 for all 1 ď i ď n. (5.50)

Notice that each equation in (5.50) involves only one variable αi. This means that the polynomial
ppxq :“ c0 ` c1x` ¨ ¨ ¨ ` cn´1x

n´1 has n distinct roots. But the degree of p is at most n´ 1, so it
must be the zero polynomial and hence c0 “ ¨ ¨ ¨ “ cn´1 “ 0, as desired.
Exercise 5.51. Show that there exists an infinite sequence of vectors x0, x1, . . . P Rn such that for
all i1 ă i2 ă . . . ă in, the tuple pxi1 , xi2 , . . . , xinq is independent.
Exercise 5.52. Verify the following claims (which were advertised back in §1.F):

(r1) rankpInq “ n for all n P N;
(r2) if A PMmˆnpF q, then rankpAq ď mintm,nu;
(r3) if A PMmˆnpF q and B PMnˆrpF q, then rankpABq ď mintrankpAq, rankpBqu.

5.F. Fast matrix multiplication
In view of the correspondence between matrix multiplication and composition of linear functions
established in §5.E, an important and natural question arises:

How quickly can we multiply two matrices?
Let R be a ring and let A, B PMnˆnpRq be two n-by-n matrices over R. We shall view addition
and multiplication in the ring R itself to be elementary operations. By definition,

pABqpi, jq “
n
ÿ

k“1
Api, kqBpk, jq.

Thus, computing a single entry of AB requires adding n terms, each a product of two elements of R.
Since the matrix AB has n2 entries, computing AB directly using the definition takes roughly n3

steps. Somewhat surprisingly, there exist clever algorithms for matrix multiplication that take fewer
than a cubic number of steps. The first such algorithm was developed by Volker Strassen in 1969.
Instead of n3, Strassen’s algorithm requires only Opn2.80...q operations, where the big-O symbol
O means that the exact number of operations is upper bounded by n2.80... times some constant
independent of n (which may vary depending on the particular implementation of the algorithm).
The exact value of the exponent is log2 7 “ 2.80 . . .; we will soon see where this value comes
from. After Strassen’s seminal work, several improved algorithms have been proposed. In 1990,
Don Coppersmith and Shmuel Winograd introduced an algorithm with running time Opn2.375...q.
The Coppersmith–Winograd algorithm was unbeaten until 2010; the best currently known matrix
multiplication algorithm is a modification of the Coppersmith–Winograd algorithm due to François
Le Gall from 2014, with running time Opn2.372...q. Finding the best possible matrix multiplication
algorithm is an important open problem in computer science; in particular, the following is an open
question:
Open Problem 5.53. Is it true that for every ε ą 0, there is an algorithm for multiplying two
n-by-n matrices with running time Opn2`εq?

While the later approaches are quite technical and fall beyond the scope of these notes, Strassen’s
algorithm is actually rather easy to explain.17 For convenience, assume that n “ 2k is a power of

17Another advantage of Strassen’s algorithm is that it is actually used in practice, whereas the other methods,
such as the Coppersmith–Winograd algorithm, only become superior for values of n that are too large to appear in
practical applications.
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2. The strategy is to reduce computing the product of two n-by-n matrices to multiplying several
pairs of pn{2q-by-pn{2q matrices and then proceed recursively. Let A, B PMnˆnpRq. Split each of
A and B into four pn{2q-by-pn{2q “blocks,” as follows:

A “:
„

A11 A12
A21 A22



and B “:
„

B11 B12
B21 B22



.

If we also write

AB “:
„

C11 C12
C21 C22



,

then
C11 “ A11B11 `A12B21; C12 “ A11B12 `A12B22;
C21 “ A21B11 `A22B21; C22 “ A21B12 `A22B22.

(5.54)

Equations (5.54) reduce computing AB to multiplying 8 pairs of pn{2q-by-pn{2q matrices (matrix
addition takes only Opn2q steps, so its contribution to the total running time of the algorithm is
negligible). This means that if we apply formulas (5.54) recursively, then doubling n would increase
the running time of the algorithm approximately by a factor of 8, which means that the running
time is of the order n3. So far, we have not improved on the naïve approach that simply uses the
definition of matrix multiplication.

Strassen’s key insight is that to compute C11, C12, C21, and C22, one can get away with only
seven multiplications instead of eight. Namely, consider the following matrices:

M1 :“ pA11 `A22qpB11 `B22q;
M2 :“ pA21 `A22qB11;
M3 :“ A11pB12 ´B22q;
M4 :“ A22pB21 ´B11q;
M5 :“ pA11 `A12qB22;
M6 :“ pA21 ´A11qpB11 `B12q;
M7 :“ pA12 ´A22qpB21 `B22q.

Each of M1, . . . , M7 is computed using a simple matrix multiplication (and a few matrix additions),
and an easy direct calculation shows that

C11 “M1 `M4 ´M5 `M7; C12 “M3 `M5;
C21 “M2 `M4; C22 “M1 ´M2 `M3 `M6.

Using these formulas recursively, we obtain an algorithm whose running time increases by a factor
of 7 each time n doubles, and hence the running time is Opnlog2 7q, as desired.

A nice application of fast matrix multiplication is to the following problem:
Given a graph G “ pV,Eq on n vertices, how quickly can we determine whether it
contains a triangle, i.e., a triple or pairwise adjacent vertices?

A naïve approach is to simply check every possible triple of vertices to see whether they form a
triangle. Since there are

`

n
3
˘

« n3{6 triples to check, this gives an algorithm with running time
Opn3q. It turns out that we can do better using matrix multiplication. Denote the vertices of G by
v1, . . . , vn. Let A PMnˆnpZq be the adjacency matrix of G, i.e., the n-by-n matrix given by

Api, jq :“
#

1 if vivj P E;
0 otherwise.
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Compute B :“ AA “ A2. Using fast matrix multiplication, this can be done in sub-cubic time (the
precise running time depends on the chosen matrix multiplication algorithm). Notice that

Bpi, jq “
n
ÿ

k“1
Api, kqApk, jq “ |NGpviq XNGpvjq|,

i.e., Bpi, jq is the number of common neighbors of vi and vj . Therefore, G contains a triangle if
and only if there exist some 1 ď i, j ď n such that Api, jq “ 1 and Bpi, jq ą 0, and whether such a
pair pi, jq exists can be determined in time Opn2q. Using the fastest known matrix multiplication
algorithm in this procedure leads to the fastest known algorithm for checking whether a graph
contains a triangle.

Extra exercises for Section 5
Exercise 5.55. For a set V , let KpV q denote the graph with vertex set V in which there is an
edge between every pair of distinct vertices. The graph KpV q is called the complete graph on V .
Similarly, if U , W are disjoint sets, then KpU,W q is the graph with vertex set V :“ U YW and
edge set tuv : u P U, v P W u. The graph KpU,W q is called the complete bipartite graph with
bipartition pU,W q.

Let G be a graph with edge set E. We say that graphs H1, . . . , Hk form an edge decomposition
of G if the edge sets of H1, . . . , Hk are pairwise disjoint and their union is E. The figure below
shows an edge decomposition of a complete graph on 5 vertices into 4 complete bipartite graphs:

G

;

H1 H2 H3 H4

(a) For every n ě 1, show that a complete graph on n vertices admits an edge decomposition
into n´ 1 complete bipartite graphs.

The goal of this exercise is to establish the following result:

Theorem 5.56. Let G be a complete graph on n vertices and suppose that H1, . . . , Hk are complete
bipartite graphs forming an edge decomposition of G. Then k ě n´ 1.

For concreteness, assume that the vertex set of G is t1, . . . , nu. Suppose, towards a contradiction,
that k ă n´ 1. For each 1 ď j ď k, let pUj ,Wjq be the bipartition of Hj .

(b) Show that for every vector px1, . . . , xnq P Rn,
n
ÿ

i“1
x2
i “

˜

n
ÿ

i“1
xi

¸2

´ 2
k
ÿ

j“1

¨

˝

ÿ

iPUj

xi

˛

‚

¨

˝

ÿ

iPWj

xi

˛

‚. (5.57)

(c) Prove that there is a nonzero vector px1, . . . , xnq P Rn for which the right-hand side of (5.57)
is equal to 0. Hint: Use linear algebra.

(d) Deduce Theorem 5.56.

Exercise 5.58. Let PnpRq be the R-vector space of all polynomials with real coefficients in a single
variable x of degree at most n. For q P PnpRq, let

ϕpqq : PnpRq Ñ R : p ÞÑ
ż 1

0
ppxqqpxq dx.
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(a) Check that ϕpqq P pPnpRqq˚ and that the function ϕ : PnpRq Ñ pPnpRqq˚ is linear.
(b) Show that kerpϕq “ t0u and conclude that the function ϕ : PnpRq Ñ pPnpRqq˚ is surjective.
(c) Deduce that for every α P R, there exists a unique polynomial q P PnpRq such that

ppαq “

ż 1

0
ppxqqpxqdx for all p P PnpRq.

Exercise 5.59. Let K be a field and let F Ď K be a subfield of K. (Or, in the terminology of
Exercise 4.28, K is an extension of F .) Suppose that K is finite-dimensional as an F -vector space
and let n :“ dimF K. Show that there is a set R ĎMnˆnpF q of n-by-n matrices over F such that
K, as a field, is isomorphic to R with matrix addition and multiplication. Hint: For each a P K,
consider the F -linear function ϕa : K Ñ K given by ϕapxq :“ ax for all x P K.

6. Exterior algebra
6.A. Multilinear functions

Definition 6.1. Let V1, . . . , Vk,W be vector spaces over a field F . A function f : V1ˆ¨ ¨ ¨ˆVk ÑW
is k-linear (or multilinear if k is implicit) if for all 1 ď i ď k and for all v1 P V1, . . . , vi´1 P Vi´1,
vi`1 P Vi`1, . . . , vk P Vk, the function

Vi ÑW : v ÞÑ fpv1, . . . , vi´1, v, vi`1, . . . , vkq

is linear. Informally, f : V1 ˆ ¨ ¨ ¨ ˆ Vk ÑW is k-linear if it is linear separately in each variable.
A function f : V ÑW is 1-linear if and only if it is linear. A function f : V1ˆ V2 ÑW is 2-linear

(or bilinear) if the following equations hold for all x1, y1 P V1, x2, y2 P V2, and a P F :
fpx1 ` y1, x2q “ fpx1, x2q ` fpy1, x2q; fpx1, x2 ` y2q “ fpx1, x2q ` fpx1, y2q;

fpax1, x2q “ fpx1, ax2q “ afpx1, x2q.

These equations show that bilinear functions are “multiplication-like”; and indeed, most natural
examples of bilinear functions are various multiplication operations.
Example 6.2. Let F be a field. Then the multiplication operation FˆF Ñ F : pa, bq ÞÑ ab is bilinear.
More generally, if V is an F -vector space, then the scalar multiplication F ˆ V Ñ V : pa, vq ÞÑ a ¨ v
is a bilinear function. Generalizing this even further, if n, m, k P N, then the matrix multiplication

MkˆmpF q ˆMmˆnpF q ÑMkˆnpF q : pA,Bq ÞÑ AB

is a bilinear function.
Example 6.3. Let V be an F -vector space. Then the function

V ˆ V ˚ Ñ F : pv, fq ÞÑ fpvq (6.4)
is bilinear. Note that in the finite-dimensional case, this can be viewed as a special case of the previous
example, since if dimV “ n, then the map (6.4) can be represented by the matrix multiplication

M1ˆnpF q ˆMnˆ1pF q ÑM1ˆ1pF q – F.

Example 6.5. In general, it is fairly easy to write down many bilinear functions that do not have
any special “meaning” attached to them. For instance, any function of the form

F 2 ˆ F 2 Ñ F : ppx1, x2q, py1, y2qq ÞÑ ax1y1 ` bx1y2 ` cx2y1 ` dx2y2,

where a, b, c, d are fixed parameters from F , is bilinear.
The next useful lemma states that a multilinear map is determined by its values on basis vectors:

Lemma 6.6. Let V1, . . . , Vk, W be vector spaces over a field F . For each 1 ď i ď k, let Bi Ď Vi be
a basis for Vi. Suppose that f , g : V1ˆ ¨ ¨ ¨ ˆVk ÑW are k-linear functions such that for all x1 P B1,
. . . , xk P Bk, we have fpx1, . . . , xkq “ gpx1, . . . , xkq. Then f “ g.
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Proof. We will give a proof for k “ 2, the general case being left as an exercise. Take any v P V1
and w P V2. Our goal is to show that fpv, wq “ gpv, wq. To this end, write

v “ a1x1 ` ¨ ¨ ¨ ` anxn, a1, . . . , an P F, x1, . . . , xn P B1;

w “ b1y1 ` ¨ ¨ ¨ ` bmym, b1, . . . , bm P F, y1, . . . , ym P B2.

Then we have

fpv, wq “ fpa1x1 ` ¨ ¨ ¨ ` anxn, wq

rsince f is linear in the first variables “

n
ÿ

i“1
aifpxi, wq

“

n
ÿ

i“1
aifpxi, b1y1,` ¨ ¨ ¨ ` bmymq

rsince f is linear in the second variables “

n
ÿ

i“1

m
ÿ

j“1
aibjfpxi, yjq

rsince f and g agree on the basis vectorss “

n
ÿ

i“1

m
ÿ

j“1
aibjgpxi, yjq

rsince g is bilinears “ gpv, wq. �

Exercise 6.7 (important). Let F be a field and let A P MmˆnpF q be an m-by-n matrix over F .
Define a function

fA : Mmˆ1pF q ˆMnˆ1pF q ÑM1ˆ1pF q : px, yq ÞÑ xJAy.

Notice that since Mmˆ1pF q – Fm, Mnˆ1pF q – Fn, and M1ˆ1pF q – F , we could think of fA as a
function from Fm ˆ Fn to F .

(a) Show that for each A PMmˆnpF q, the function fA is bilinear.
(b) Use Lemma 6.6 to prove that every bilinear function

f : Mmˆ1pF q ˆMnˆ1pF q ÑM1ˆ1pF q

is equal to fA for some matrix A PMmˆnpF q.

Example 6.8. For a 2-by-2 matrix A PM2ˆ2pF q, the function fA acts as follows:

fA

ˆ„

x1
x2



,

„

y1
y2

˙

“
“

x1 x2
‰

„

Ap1, 1q Ap1, 2q
Ap2, 1q Ap2, 2q

 „

y1
y2



“
“

Ap1, 1qx1y1 `Ap1, 2qx1y2 `Ap2, 1qx2y1 `Ap2, 2qx2y2
‰

.

6.B. Alternating maps

Definition 6.9. Let V and W be F -vector spaces. A k-linear map f : V k Ñ W is alternating if
for all x1, . . . , xk P V , we have fpx1, . . . , xkq “ 0 whenever the vectors x1, . . . , xk are not pairwise
distinct, i.e., when there exist 1 ď i ă j ď k such that xi “ xj .

Example 6.10. The function V k ÑW that sends every tuple px1, . . . , xkq to zero is alternating.
(This example illustrates that an alternating function can be zero even if the inputs are distinct.)

Example 6.11. Every linear (i.e., 1-linear) function is, vacuously, alternating (since it accepts only
a single input).
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Example 6.12. Let F be a field and consider the function f : F 2 ˆ F 2 Ñ F given by
fppx1, x2q, py1, y2qq :“ x1y2 ´ x2y1.

This function is clearly bilinear. Furthermore, it is alternating, since
fppx1, x2q, px1, x2qq “ x1x2 ´ x2x1 “ 0.

The name “alternating” is explained by the following lemma:

Lemma 6.13. Let V and W be F -vector spaces and suppose that f : V k Ñ W is an alternating
k-linear map. Then for any x1, . . . , xk P V and 1 ď i ă j ď k,

fpx1, . . . , xkq “ ´fpx1, . . . , xi´1, xj , xi`1, . . . , xj´1, xi, xj`1, . . . , xkq;
in other words, switching any two inputs changes the sign of f .

Proof. We will give a proof for k “ 2, leaving the general case as an exercise. Our goal is to show
that for all x, y P V , fpx, yq “ ´fpy, xq. To that end, consider the value fpx` y, x` yq. Since f is
alternating, fpx` y, x` yq “ 0. On the other hand,

fpx` y, x` yq “ fpx, xq ` fpx, yq ` fpy, xq ` fpy, yq “ fpx, yq ` fpy, xq,

where we used that fpx, xq “ fpy, yq “ 0. Hence, fpx, yq ` fpy, xq “ 0, as desired. �

The importance of alternating functions lies in the following fact:

Lemma 6.14. Let V and W be F -vector spaces and let f : V k Ñ W be an alternating k-linear
map. Then for all x1, . . . , xk P V , we have fpx1, . . . , xkq “ 0 whenever the tuple px1, . . . , xkq is not
independent.

Proof. Suppose x1, . . . , xk P V are vectors such that the tuple px1, . . . , xkq is not independent.
This means that one of the vectors x1, . . . , xk can be expressed as a linear combination of the other
ones (exercise!). For concreteness, assume that xk “ a1x1 ` ¨ ¨ ¨ ` ak´1xk´1. Then we have

fpx1, . . . , xkq “ fpx1, . . . , xk´1, a1x1 ` ¨ ¨ ¨ ` ak´1xk´1q “
k´1
ÿ

i“1
aifpx1, . . . , xk´1, xiq “ 0. �

Our goal is to construct multilinear functions for which the converse of Lemma 6.14 holds, i.e.,
such that fpx1, . . . , xkq “ 0 if and only if the tuple px1, . . . , xkq is not independent. Furthermore,
the multilinear functions we construct will be given by iteratively applying a certain associative
binary operation. Without further ado, let us state the main result of this section:

Theorem/Definition 6.15 (Exterior products). Let F be a field and let V be an F -vector
space of dimension n. Then there exist disjoint F -vector spaces V1, V2, . . . and an associative binary
operation ^ on V1 Y V2 Y . . ., called the exterior product (or wedge product) such that:
(EP1) V1 “ V .
(EP2) For each k ě 1, dimVk “

`

n
k

˘

. In particular, dimVm “ 0 for all m ą n.
(EP3) If x P Vk and y P V`, then x^ y P Vk``.
(EP4) For each k ě 1, we have Vk “ Spantx1 ^ . . .^ xk : x1, . . . , xk P V u.
(EP5) For all k, ` ě 1, the map Vk ˆ V` Ñ Vk`` : px, yq ÞÑ x^ y is bilinear.
(EP6) The map V ˆ V Ñ V2 : px, yq ÞÑ x^ y is alternating.
(EP7) For all x1, . . . , xk P V , the tuple px1, . . . , xkq is independent if and only if x1 ^ . . .^ xk ‰ 0.
(EP8) For every F -vector space W and an alternating k-linear map f : V k ÑW , there is a unique

linear function ϕ : Vk ÑW such that for all x1, . . . , xk P V , we have
fpx1, . . . , xkq “ ϕpx1 ^ . . .^ xkq.

For each k ě 1, the space Vk is referred to as the k-th exterior power of V and is denoted by
Źk V .
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6.C. Discussion of Theorem 6.15
For now, let’s take the existence of the structure described in Theorem 6.15 for granted and see
what consequences we can draw from it. We start with two basic remarks:

Remark 6.16. It follows from (EP5) and (EP6) that for each k ě 1, the map
V k Ñ Vk : px1, . . . , xkq ÞÑ x1 ^ . . .^ xk

is k-linear and alternating. (Exercise: prove this!)

Remark 6.17. The structure pV1, V2, . . . ;^q is “essentially” unique, meaning that if W1, W2, . . .
is another sequence of disjoint F -vector spaces equipped with an associative binary operation ˜̂
satisfying (EP1)–(EP8), then there exist unique isomorphisms ϕk : Vk Ñ Wk that send ^ to ˜̂ .
(This is why we can refer to the k-th exterior power of V .) Indeed, the function

V k ÑWk : px1, . . . , xkq ÞÑ x1 ˜̂ . . . ˜̂xk
is k-linear and alternating, so, by (EP8), there is a unique linear map ϕk : Vk ÑWk such that

x1 ˜̂ . . . ˜̂xk “ ϕkpx1 ^ . . .^ xkq.

Similarly, the map
V k Ñ Vk : px1, . . . , xkq ÞÑ x1 ^ . . .^ xk

is also alternating, so, by (EP8) applied to ˜̂ , there is a unique linear map ψk : Wk Ñ Vk with
x1 ^ . . .^ xk “ ψkpx1 ˜̂ . . . ˜̂xkq.

Since, by (EP4),
Vk “ Spantx1 ^ . . .^ xk : x1, . . . , xk P V u and Wk “ Spantx1 ˜̂ . . . ˜̂xk : x1, . . . , xk P V u,

we conclude that the functions ϕk and ψk are inverses of each other, and hence they are isomorphisms.

Let us now consider some low-dimensional examples.

Example 6.18 (The 2-dimensional case). Suppose that V is 2-dimensional; for concreteness,
let V “M2ˆ1pF q. Then dimV2 “

`2
2
˘

“ 1, so we can take V2 “ F . Now we need to define a bilinear
function ^ : V ˆ V Ñ F such that a pair of vectors px, yq P V ˆ V is independent if and only if
x^ y ‰ 0. We claim that the following function works:

„

x1
x2



^

„

y1
y2



:“ x1y2 ´ x2y1.

Indeed, with this definition, we have x^ y “ 0 if and only if x1y2 “ x2y1. If y1, y2 ‰ 0, then this
means that x1{y1 “ x2{y2 :“ c, and hence x “ cy, so the pair px, yq is not independent.

Exercise 6.19. Finish this argument (i.e., consider the cases when one or both of y1, y2 are zero).

Example 6.20 (The 3-dimensional case). Suppose that dimV “ 3; for concreteness, assume
that V “M3ˆ1pF q. Now both V2 and V3 are nontrivial, with dimV2 “

`3
2
˘

“ 3 and dimV3 “
`3

3
˘

“ 1.
Take V2 “M3ˆ1pF q and V3 “ F . We have to define a bilinear function ^ : V ˆ V Ñ V2 such that a
pair of vectors px, yq P V ˆ V is independent if and only if x^ y ‰ 0. Here’s the idea: Suppose that
the pair px, yq is not independent, where

x “
“

x1 x2 x3
‰J and y “

“

y1 y2 y3
‰J
.

Then the following three pairs of vectors in M2ˆ1pF q are also not independent:
ˆ„

x1
x2



,

„

y1
y2

˙

,

ˆ„

x1
x3



,

„

y1
y3

˙

, and
ˆ„

x2
x3



,

„

y2
y3

˙

. (6.21)

It turns out that the converse implication also holds:
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Exercise 6.22. Show that if the three pairs of vectors in (6.21) are not independent, then neither
is the pair px, yq.

Note that we do need all three pairs in (6.21): For instance, if

x “
“

0 1 0
‰J and y “

“

0 0 1
‰J
,

then the pair px, yq is independent, even though the two pairs
ˆ„

x1
x2



,

„

y1
y2

˙

“

ˆ„

0
1



,

„

0
0

˙

and
ˆ„

x1
x3



,

„

y1
y3

˙

“

ˆ„

0
0



,

„

0
1

˙

are not. Combining Exercise 6.22 with Example 6.18, we conclude that the following definition gives
a bilinear function that correctly “detects” independence:

»

–

x1
x2
x3

fi

fl^

»

–

y1
y2
y3

fi

fl :“

»

–

x1y2 ´ x2y1
x1y3 ´ x3y1
x2y3 ´ x3y2

fi

fl . (6.23)

Now we also have to find bilinear maps ^ : V ˆ V3 Ñ F and ^V2 ˆ V Ñ F so that for all x, y,
z P V , px ^ yq ^ z “ x ^ py ^ zq :“ x ^ y ^ z, and x ^ y ^ z ‰ 0 if and only if px, y, zq is a basis
for V . It is not at all obvious how to achieve this (and whether it is even possible) by writing an
explicit formula such as (6.23). In the proof of Theorem 6.15 that we will give, we shall try to
completely avoid such “numerical” expressions and instead construct exterior products “abstractly.”
Nevertheless, after proving Theorem 6.15, we will be able to derive such explicit formulas. Here are
the ones for the 3-dimensional case: If

x “
“

x1 x2 x3
‰J
P V and u “

“

u1 u2 u3
‰J
P V2,

then we can set
»

–

x1
x2
x3

fi

fl^

»

–

u1
u2
u3

fi

fl :“ x1u3 ´ x2u2 ` x3u1 and

»

–

u1
u2
u3

fi

fl^

»

–

x1
x2
x3

fi

fl :“ u1x3 ´ u2x2 ` u3x1.

6.D. Parity of permutations
Let V and W be vector spaces over a field F and suppose that f : V 3 ÑW is an alternating 3-linear
function. For any x1, x2, x3 P V , there are six ways to plug them into f :

fpx1, x2, x3q, fpx1, x3, x2q, fpx2, x1, x3q, fpx2, x3, x1q, fpx3, x1, x2q, and fpx3, x2, x1q.

Using Lemma 6.13, we can express all six of these in terms of fpx1, x2, x3q:

fpx1, x2, x3q;
fpx1, x3, x2q “ ´fpx1, x2, x3q;
fpx2, x1, x3q “ ´fpx1, x2, x3q;
fpx2, x3, x1q “ ´fpx1, x3, x2q “ fpx1, x2, x3q;
fpx3, x1, x2q “ ´fpx1, x3, x2q “ fpx1, x2, x3q;
fpx3, x2, x1q “ ´fpx1, x2, x3q.

To generalize this to alternating k-linear maps for arbitrary k ě 1, we need a quick review of
permutations and their parity.
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Let X be a finite set. A permutation of (or on) X is a bijection σ : X Ñ X. The set of all
permutations of X is denoted by SympXq and is called the symmetric group of X. The product of
two permutations σ, π P SympXq is defined by σπ :“ σ ˝ π:

X X X
π σ

σ ˝ π “ σπ

This operation indeed makes SympXq into a group: Composition of permutations is clearly associative;
the identity element of SympXq is the identity map idX : X Ñ X; and every σ P SympXq has an
inverse σ´1 P SympXq because σ a bijection.

Example 6.24. Let X :“ t1, 2, 3u and consider the permutations σ, π P SympXq given by
σ : 1 ÞÑ 2, 2 ÞÑ 3, 3 ÞÑ 1;

π : 1 ÞÑ 3, 2 ÞÑ 2, 3 ÞÑ 1.
Then σπ is the permutation given by

σπ : 1 ÞÑ 1, 2 ÞÑ 3, 3 ÞÑ 2,
and σ´1 is given by

σ´1 : 1 ÞÑ 3, 2 ÞÑ 1, 3 ÞÑ 2.

Definition 6.25. A transposition on a finite set X is a permutation τ P SympXq that interchanges
two elements of X while keeping the rest of the elements fixed. Explicitly, for i, j P X, i ‰ j, the
transposition of i and j is the permutation τij P SympXq such that

τijpiq :“ j, τijpjq :“ i, and τijpxq :“ x for all x R ti, ju.

The key to understanding exterior products lies in the following basic combinatorial fact, which
we will leave as an exercise (it is usually covered in most abstract algebra courses):

Exercise 6.26 (important). Let X be a finite set and let σ P SympXq be a permutation. Prove the
following statements.

(a) There is a finite sequence of transpositions τ1, . . . , τk such that σ “ τ1 ¨ ¨ ¨ τk.
(b) If τ1, . . . , τk, ρ1, . . . , ρ` are transpositions such that

σ “ τ1 ¨ ¨ ¨ τk “ ρ1 ¨ ¨ ¨ ρ`,

then k “ ` pmod 2q.

Example 6.27. Let X :“ t1, 2, 3, 4, 5u and suppose that σ P SympXq is given by
σ : 1 ÞÑ 2, 2 ÞÑ 3, 3 ÞÑ 1, 4 ÞÑ 5, 5 ÞÑ 4,

then σ “ τ13τ12τ45 “ τ23τ34τ13τ15τ14 (exercise!), i.e., σ can be expressed as a product of 3 or 5
transpositions. However, in accordance with Exercise 6.26, it is impossible to write σ as a product
of 4, 6, or any other even number of transpositions.

Definition 6.28. Let X be a finite set and let σ P SympXq. Write σ as a product of transpositions:
σ “ τ1 ¨ ¨ ¨ τk. Then the sign of σ is signpσq :“ p´1qk. (The sign of σ is well-defined since it only
depends on the parity of k.) If signpσq “ 1, then we say that σ is even; otherwise, σ is odd.

Exercise 6.29. Show that for any σ, π P SympXq, we have signpσπq “ signpσqsignpπq.

Exercise 6.30. Show that for any σ P SympXq, signpσ´1q “ signpσq.
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Exercise 6.31. Show that if X is a finite set of size at least 2, then the number of even permutations
in SympXq is equal to the number of odd permutations in SympXq. Hint: Take any transposition
τ P SympXq and consider the map SympXq Ñ SympXq : σ ÞÑ τσ.

The following statement is an immediate consequence of Lemma 6.13 that generalizes the discussion
from the beginning of this subsection:

Exercise 6.32. Let V and W be F -vector spaces and suppose that f : V k ÑW is an alternating
k-linear map. Show that for any x1, . . . , xk P V and σ P Sympt1, . . . , kuq,

fpxσp1q, . . . , xσpkqq “ signpσq ¨ fpx1, . . . , xkq.

From Exercise 6.32 and assuming the existence of exterior products (which we haven’t proved
yet), we can derive a useful corollary that will guide our construction of exterior powers:

Corollary 6.33. Let F be a field and let V be an F -vector space of dimension n. Pick a basis
te1, . . . , enu for V . Then the set tei1 ^ . . .^ eik : 1 ď i1 ă ¨ ¨ ¨ ă ik ď nu is a basis for

Źk V .

Proof. By (EP4),
Źk V “ Spanptx1 ^ . . .^ xk : x1, . . . , xk P V uq. Consider any element of the

form x1 ^ . . .^ xk. Since te1, . . . , enu is a basis for V , we can express each of x1, . . . , xk as a linear
combination of e1, . . . , en. If we replace the vectors x1, . . . , xk in x1 ^ . . . ^ xk by these linear
combinations and expand use the bilinearity of ^, we obtain that

x1 ^ . . .^ xk P Spanptei1 ^ . . .^ eik : 1 ď i1, . . . , ik ď nuq.

Now consider an expression of the form ei1 ^ . . .^ eik . If the indices i1, . . . , ik are not distinct, then
ei1 ^ . . .^ eik “ 0. If, on the other hand, they are distinct, then, by Exercise 6.32, ei1 ^ . . .^ eik is
equal to plus or minus one times the wedge product of ei1 , . . . , eik taken in the increasing order of
indices. This shows that the set

tei1 ^ . . .^ eik : 1 ď i1 ă ¨ ¨ ¨ ă ik ď nu

spans
Źk V . Since the size of this set is equal to

`

n
k

˘

“ dim
Źk V , it must be a basis. �

Example 6.34. Let V “M3ˆ1pRq and let

e1 “
“

1 0 0
‰J
, e2 “

“

0 1 0
‰J
, and e3 “

“

0 0 1
‰J

be the standard basis vectors for V . Let’s use this basis to compute
»

–

1
1
0

fi

fl^

»

–

1
0
1

fi

fl^

»

–

0
1
1

fi

fl “ pe1 ` e2q ^ pe1 ` e3q ^ pe2 ` e3q.

We have

pe1 ` e2q ^ pe1 ` e3q “ e1 ^ e1 ` e1 ^ e3 ` e2 ^ e1 ` e2 ^ e3

“ e1 ^ e3 ´ e1 ^ e2 ` e2 ^ e3.

Therefore,

pe1 ` e2q ^ pe1 ` e3q ^ pe2 ` e3q “ pe1 ^ e3 ´ e1 ^ e2 ` e2 ^ e3q ^ pe2 ` e3q

“ e1 ^ e3 ^ e2 ´ e1 ^ e2 ^ e3 “ ´2e1 ^ e2 ^ e3.

The significance of the coefficient ´2 will be explained in the next subsection.
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6.E. Determinants
Let V be an n-dimensional vector space over a field F and let ϕ : V Ñ V be a linear function.
Consider the map V n Ñ

Źn V given by

px1, . . . , xnq ÞÑ ϕpx1q ^ . . .^ ϕpxnq.

This map is n-linear and alternating (exercise!), so, by (EP8), there is a unique linear function
f :

Źn V Ñ
Źn V such that ϕpx1q ^ . . . ^ ϕpxnq “ fpx1 ^ . . . ^ xnq. Since dim

Źn V “
`

n
n

˘

“ 1,
the only linear functions from

Źn V to itself are of the form v ÞÑ a ¨ v for a fixed a P F ; therefore
there exists a unique element of F , called the determinant of ϕ and denoted by detpϕq, such that

ϕpx1q ^ . . .^ ϕpxnq “ detpϕq ¨ x1 ^ . . .^ xn.

If A P MnˆnpF q, then A represents a linear map Mnˆ1pF q Ñ Mnˆ1pF q : x ÞÑ Ax, and we denote
the determinant of this map by detpAq and call it the determinant of A. Note that if te1, . . . , enu
is the standard basis for Mnˆ1pF q, then, by definition,

Ae1 ^ . . .^Aen “ detpAq ¨ e1 ^ . . .^ en,

and thus calculating detpAq is tantamount to computing the wedge product of the columns of A.

Example 6.35. Recall from Example 6.34 that
»

–

1
1
0

fi

fl^

»

–

1
0
1

fi

fl^

»

–

0
1
1

fi

fl “ ´2e1 ^ e2 ^ e3.

This means that, by definition,

det

»

–

1 1 0
1 0 1
0 1 1

fi

fl “ ´2.

Notice that our definition of the determinant is coordinate-free: We don’t need to pick a basis
for V in order to determine detpϕq for ϕ : V Ñ V . However, by generalizing the calculation from
Example 6.34, it is possible to obtain an explicit numerical expression for the determinant:

Theorem 6.36 (Leibniz formula). Let F be a field and let A PMnˆnpF q. Then

detpAq “
ÿ

σ

signpσq
n
ź

i“1
Api, σpiqq, (6.37)

where the summation is over all σ P Sympt1, . . . , nuq.

Proof sketch. Let te1, . . . , enu be the standard basis for Mnˆ1pF q. Then the exterior product
of the columns of A can be written as

Ae1 ^ . . .^Aen “pAp1, 1qe1 `Ap2, 1qe2 ` ¨ ¨ ¨ `Apn, 1qenq
^pAp1, 2qe1 `Ap2, 2qe2 ` ¨ ¨ ¨ `Apn, 2qenq
^ . . .

. . .

^pAp1, nqe1 `Ap2, nqe2 ` ¨ ¨ ¨ `Apn, nqenq.

Expanding this product (using that ^ is bilinear and alternating) gives (6.37). �

Exercise 6.38. Fill in the details in the proof of Theorem 6.36.

Exercise 6.39. Use Theorem 6.36 to show that for all A PMnˆnpF q, detpAJq “ detpAq.
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Example 6.40. There are precisely two permutations of the set t1, 2u, namely p1 ÞÑ 1, 2 ÞÑ 2q and
p1 ÞÑ 2, 2 ÞÑ 1q. The first of these permutations (the identity) is even, while the second one is odd.
Therefore, by the Leibniz formula, the determinant of a 2-by-2 matrix A is

detpAq “ Ap1, 1qAp2, 2q ´Ap1, 2qAp2, 1q.
Similarly, there are six permutations of the set t1, 2, 3u, three of which are even and three odd, and
the determinant of a 3-by-3 matrix A is

detpAq “Ap1, 1qAp2, 2qAp3, 3q ´Ap1, 1qAp2, 3qAp3, 2q ´Ap1, 2qAp2, 1qAp3, 3q
`Ap1, 2qAp2, 3qAp3, 1q `Ap1, 3qAp2, 1qAp3, 2q ´Ap1, 3qAp2, 2qAp3, 1q.

In principle, the Leibniz formula could be used to define the determinant of a matrix. However,
our “coordinate-free” definition, which is more abstract, has some significant advantages, as it allows
us to derive several useful properties of determinants almost effortlessly.

Theorem 6.41. Let V be an n-dimensional vector space over a field F and let ϕ : V Ñ V be a
linear function. Then ϕ is bijective if and only if detpϕq ‰ 0.

Proof. Let te1, . . . , enu be a basis for V . Then the function ϕ is bijective if and only if the set
tϕpe1q, . . . , ϕpenqu is a basis for V , i.e., if the tuple pϕpe1q, . . . , ϕpenqq is independent. By (EP7),
this is equivalent to ϕpe1q ^ . . . ^ ϕpenq ‰ 0. But ϕpe1q ^ . . . ^ ϕpenq “ detpϕq ¨ e1 ^ . . . ^ en by
definition, and so ϕpe1q ^ . . .^ ϕpenq ‰ 0 if and only if detpϕq ‰ 0, as desired. �

Lemma 6.42. Let V be an n-dimensional vector space over a field F and let ϕ, ψ : V Ñ V be
linear functions. Then detpϕ ˝ ψq “ detpϕq detpψq. Hence, if A, B PMnˆnpF q are n-by-n matrices
over F , then detpABq “ detpAq detpBq.

Proof. Let x1, . . . , xn P V and let yi :“ ψpxiq for each 1 ď i ď n. We have
pϕ ˝ ψqpx1q ^ . . .^ pϕ ˝ ψqpxnq “ϕpψpx1qq ^ . . .^ ϕpψpxnqq

“ϕpy1q ^ . . .^ ϕpynq

“ detpϕq ¨ y1 ^ . . .^ yn

“ detpϕq ¨ ψpx1q ^ . . .^ ψpxnq

“ detpϕq detpψq ¨ x1 ^ . . .^ xn,

as desired. �

Our next result is an extension of Lemma 6.42 to non-square matrices. Before we state it, let us
fix some notation. For n P N, let rns :“ t1, . . . , nu. For a set X and k P N, let PkpXq be the set of
all k-element subsets of X. Notice that

|Pkprnsq| “
ˆ

n

k

˙

.

For an m-by-n matrix A and a pair of subsets S Ď rms, T Ď rns, let AS,T be the matrix obtained
from A by only keeping the entries in the rows whose indices are in S and the columns whose indices
are in T ; more formally, if S “ ts1, . . . , sku and T “ tt1, . . . , t`u, where

s1 ă ¨ ¨ ¨ ă sk and t1 ă ¨ ¨ ¨ ă t`,

then AS,T is the k-by-` matrix such that
AS,T pi, jq :“ Apsi, tjq for all i P rks and j P r`s.

For instance,

if A “

»

–

1 2 3 4
3 1 4 5
0 1 0 1

fi

fl and S “ t1, 3u, T “ t1, 2, 4u, then AS,T “

„

1 2 4
0 1 1



.
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Theorem 6.43 (Binet–Cauchy formula). Let F be a field and let m, n be positive integers
with m ě n. Then, for all A PMnˆmpF q and B PMmˆnpF q, we have

detpABq “
ÿ

SPPnprmsq

detpArns,SqdetpBS,rnsq. (6.44)

Example 6.45. Working over R, consider the matrices

A “

„

1 2 3
0 1 1



and B “

»

–

1 1
2 2
3 4

fi

fl .

Then
detpABq “ det

„

14 17
5 6



“ 14 ¨ 6´ 5 ¨ 17 “ ´1.

On the other hand, the right-hand side of (6.44) is

detpAr2s,t1,2uq detpBt1,2u,r2sq ` detpAr2s,t1,3uqdetpBt1,3u,r2sq ` detpAr2s,t2,3uq detpBt2,3u,r2sq

“ det
„

1 2
0 1



det
„

1 1
2 2



` det
„

1 3
0 1



det
„

1 1
3 4



` det
„

2 3
1 1



det
„

2 2
3 4



“p1 ¨ 1´ 0 ¨ 2q ¨ p1 ¨ 2´ 2 ¨ 1q ` p1 ¨ 1´ 0 ¨ 3q ¨ p1 ¨ 4´ 3 ¨ 1q ` p2 ¨ 1´ 1 ¨ 3q ¨ p2 ¨ 4´ 3 ¨ 2q
“ 1 ¨ 0` 1 ¨ 1` p´1q ¨ 2 “ 0` 1´ 2 “ ´1,

in agreement with Theorem 6.43.

To establish Theorem 6.43, we will need two lemmas that are also interesting and useful in their
own right. Let V be an n-dimensional vector space over a field F and let te1, . . . , enu be a basis for
V . For a set S “ ts1, . . . , sku Ď rns, where s1 ă ¨ ¨ ¨ ă sk, write

eS :“ es1 ^ . . .^ esk
. (6.46)

By Corollary 6.33, the set teS : S P Pkprnsqu is a basis for
Źk V .

Lemma 6.47. Let F be a field and letm, n be positive integers withm ě n. Set V :“Mnˆ1pF q and
W :“Mmˆ1pF q. Let te1, . . . , enu and tf1, . . . , fmu be the standard bases for V and W , respectively.
Let A PMnˆmpF q and let ϕA :

ŹnW Ñ
Źn V be the unique linear function such that

Ay1 ^ . . .^Ayn “ ϕApy1 ^ . . .^ ynq for all y1, . . . , yn PW.

(Such a function ϕA exists due to (EP8).) Then, for all S P Pnprmsq, we have

ϕApfSq “ detpArns,Sq ¨ e1 ^ . . .^ en.

Proof. The proof of this lemma is shorter than its statement. Take any S P Pnprmsq and let the
elements of S be s1 ă ¨ ¨ ¨ ă sn. Then fS “ fs1 ^ . . .^ fsn , so

ϕApfSq “ ϕApfs1 ^ . . .^ fsnq “ Afs1 ^ . . .^Afsn .

But the vectors Afs1 , . . . , Afsn P V are precisely the columns of Arns,S , and hence

Afs1 ^ . . .^Afsn “ detpArns,Sq ¨ e1 ^ . . .^ en,

as desired. �

Lemma 6.48. Let F be a field and letm, n be positive integers withm ě n. Set V :“Mnˆ1pF q and
W :“Mmˆ1pF q. Let te1, . . . , enu and tf1, . . . , fmu be the standard bases for V and W , respectively.
Let B PMmˆnpF q and let ϕB :

Źn V Ñ
ŹnW be the unique linear function such that

Bx1 ^ . . .^Bxn “ ϕBpx1 ^ . . .^ xnq for all x1, . . . , xn P V.



60 LINEAR ALGEBRA

(Such a function ϕB exists due to (EP8).) Then we have

ϕBpe1 ^ . . .^ enq “
ÿ

SPPnprmsq

detpBS,rnsq ¨ fS .

Exercise 6.49. Prove Lemma 6.48.

Proof of Theorem 6.43. Set V :“Mnˆ1pF q and W :“Mmˆ1pF q, and let te1, . . . , enu and
tf1, . . . , fmu be the standard bases for V and W , respectively. Also, let ϕA :

ŹnW Ñ
Źn V and

ϕB :
Źn V Ñ

ŹnW be as in Lemmas 6.47 and 6.48. For each 1 ď i ď n, let yi :“ Bei be the i-th
column of B. Then we have

ABe1 ^ . . .^ABen “ Ay1 ^ . . .^Ayn “ϕApy1 ^ . . .^ ynq

“ϕApBe1 ^ . . .^Benq “ ϕApϕBpe1 ^ . . .^ enqq.

Now, using Lemma 6.48 and the linearity of ϕA, we obtain

ϕApϕBpe1 ^ . . .^ enqq “ ϕA

¨

˝

ÿ

SPPnprmsq

detpBS,rnsq ¨ fS

˛

‚ “
ÿ

SPPnprmsq

detpBS,rnsq ¨ ϕApfSq.

Finally, by Lemma 6.47,
ÿ

SPPnprmsq

detpBS,rnsq ¨ ϕApfSq “
ÿ

SPPnprmsq

detpBS,rnsqdetpArns,Sq ¨ e1 ^ . . .^ en,

as desired. �

Exercise 6.50. Let A PMmˆnpRq. Show that detpAJAq ě 0.

Exercise 6.51 (Cramer’s rule). Let F be a field and let A P MnˆnpF q be a matrix with
detpAq ‰ 0. Fix some y PMnˆ1pF q. Let the columns of A be a1, . . . , an. For each 1 ď i ď n, let
Ai be the matrix obtained from A by replacing its i-th column by y; i.e.,

A1 :“
“

y a2 ¨ ¨ ¨ an
‰

, A2 :“
“

a1 y ¨ ¨ ¨ an
‰

, . . . , An :“
“

a1 a2 ¨ ¨ ¨ y
‰

.

Show that the unique vector x PMnˆ1pF q such that Ax “ y is given by

x “
1

detpAq

»

—

—

—

–

detpA1q
detpA2q

...
detpAnq

fi

ffi

ffi

ffi

fl

.

6.F. Proof of Theorem 6.15

The method of “postulating” what we want has many advantages; they are
the same as the advantages of theft over honest toil.

Bertrand Russell

Now it’s finally time to construct exterior products. Let V be an n-dimensional vector space over
a field F and let te1, . . . , enu be a basis for V . We already know (from Corollary 6.33) that the
exterior power

Źk V must have a basis of the form teS : S P Pkprnsqu. Here’s the idea: We will let
Vk be some (any!) vector space of the right dimension, pick an arbitrary basis in Vk, and simply
label the elements of this basis by the sets S P Pkprnsq. Then we will define the exterior product so
that it has all the required properties.
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So, let V1 :“ V and for each k ě 2, let Vk be an arbitrary F -vector space of dimension
`

n
k

˘

. Pick
a basis Bk for Vk. Since dimVk “

`

n
k

˘

, Bk has
`

n
k

˘

elements, so we can index them by the k-element
subsets of rns (of which there are exactly

`

n
k

˘

) and let
Bk “ teS : S P Pkprnsqu.

Again, “eS” here is just an arbitrary name for a vector in Vk. But these names inform our construction,
as our plan is to define an operation ^ that makes equation (6.46) true. For convenience, we also
let etiu :“ ei to make the set teS : S P P1prnsqu “ tetiu : i P rnsu a basis for V1 “ V .

Now we need to define ^. First, we define it on the basis vectors: For all ∅ ‰ S, T Ď rns, set

eS ^ eT :“
#

0 P Vk`` if S X T ‰ ∅;
signpS, T qeSYT if S X T “ 0,

(6.52)

where signpS, T q is either 1 or ´1 and is determined as follows: Let S “ ts1, . . . , sku and T “

tt1, . . . , t`u with s1 ă ¨ ¨ ¨ ă sk and t1 ă ¨ ¨ ¨ ă t`. Then signpS, T q is p´1q to the power of a number
of transpositions needed to put the sequence ps1, . . . , sk, t1, . . . , t`q in increasing order.

Remark 6.53. The value signpS, T q is well-defined, as it only depends on the parity of the number
of transpositions that put the sequence ps1, . . . , sk, t1, . . . , t`q in increasing order. (See Exercise 6.26
and Definition 6.28.)

Remark 6.54. Formula (6.52) is the only way to define ^ that is consistent with (6.46) (think why!).
For example, if S “ t1, 3u and T “ t2, 3u, then we should end up having eS^eT “ e1^e3^e2^e3 “ 0,
as reflected in (6.52). Similarly, if S “ t1, 3u and T “ t2, 4u, then signpS, T q “ ´1 (because the
sequence p1, 3, 2, 4q can be put in increasing order by a single transposition), and we should get
eS ^ eT “ e1 ^ e3 ^ e2 ^ e4 “ ´e1 ^ e2 ^ e3 ^ e4, which is again what (6.52) ensures.

Notice that if |S| “ k and |T | “ `, then eS ^ eT P Vk`` (as desired). Since ^ should be bilinear,
there is a unique way to extend (6.52) to arbitrary vectors. Namely, for all x P Vk and y P V`, we
define x^ y P Vk`` as follows: Write x and y in terms of the corresponding bases:

x “
ÿ

SPPkprnsq

aSeS and y “
ÿ

TPP`prnsq

bT eT .

Then
x^ y :“

ÿ

SPPkprnsq

ÿ

TPP`prnsq

aSbT ¨ peS ^ eT q.

That’s it! Notice that we had essentially no “freedom” in this construction: the definitions were
“forced” on us by the requirements of Theorem 6.15. What’s left to do now is to verify that the
structure obtained in this manner actually satisfies all the claims made in Theorem 6.15.

6.F.1. The operation ^ is associative.—This is the most subtle part of the argument. Since ^
is defined to be bilinear, it is enough to check associativity on the basis vectors (exercise!). So,
take S “ ts1, . . . , sku, T “ tt1, . . . , t`u, and R “ tr1, . . . , rmu with s1 ă ¨ ¨ ¨ ă sk, t1 ă ¨ ¨ ¨ ă t`, and
r1 ă ¨ ¨ ¨ ă rm, and consider the expressions

peS ^ eT q ^ eR and eS ^ peT ^ eRq.

If the sets S, T , R are not pairwise disjoint, then both of these expressions are equal to 0. Otherwise,
both of them are equal to plus or minus eSYTYR. Furthermore, the coefficient in front of eSYTYR is
equal to p´1q to the power of a number of transpositions that put the sequence

ps1, . . . , sk, t1, . . . , t`, r1, . . . , rmq

in increasing order (exercise!). Therefore, peS ^ eT q ^ eR “ eS ^ peT ^ eRq, as desired.

6.F.2. Properties (EP1), (EP2), (EP3), and (EP5).—These properties are satisfied by construction.
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6.F.3. Property (EP4): We have Vk “ Spantx1 ^ . . .^ xk : x1, . . . , xk P V u.—This holds since the
space Vk is spanned by the elements eS , S P Pkprnsq, and ^ is defined so that we have

eS “ es1 ^ . . .^ esk
,

where S “ ts1, . . . , sku and s1 ă ¨ ¨ ¨ ă sk.

6.F.4. Property (EP6): The map V ˆ V Ñ V2 : px, yq ÞÑ x^ y is alternating.—Take any x P V and
write it as x “

řn
i“1 aiei with a1, . . . , an P F . Then, by definition,

x^ x “
n
ÿ

i“1

n
ÿ

j“1
aiajpei ^ ejq.

Note that

ei ^ ej “

$

&

%

0 if i “ j;
eti,ju if i ă j;
´etj,iu if i ą j.

Hence,
x^ x “

ÿ

1ďiăjďn
paiaj ´ ajaiqeti,ju “ 0,

as claimed.

6.F.5. Property (EP7): A tuple px1, . . . , xkq P V
k is independent if and only if x1 ^ . . .^ xk ‰ 0.—

We already know from Lemma 6.14 that if px1, . . . , xkq is not independent, then x1 ^ . . .^ xk “ 0.
Now suppose that the tuple px1, . . . , xkq is independent. Then we can extend it to an ordered basis
px1, . . . , xnq, and it suffices to show that

x1 ^ . . .^ xn “ px1 ^ . . .^ xkq ^ pxk`1 ^ . . .^ xnq ‰ 0.

Since px1, . . . , xnq is a basis, we can express each of e1, . . . , en as a linear combination of x1, . . . ,
xn. Plugging these linear combinations into e1 ^ . . .^ ek and expanding, we obtain that

e1 ^ . . .^ en P Spanptxi1 ^ . . .^ xin : 1 ď i1, . . . , in ď nuq.

An expression of the form xi1 ^ . . .^ xin can only be nonzero if the indices i1, . . . , in are pairwise
distinct, in which case xi1 ^ . . . ^ xin is equal to either plus or minus x1 ^ . . . ^ xn. Therefore,
e1 ^ . . .^ en is a scalar multiple of x1 ^ . . .^ xn. Since e1 ^ . . .^ en “ erns ‰ 0 by definition, we
conclude that x1 ^ . . .^ xn ‰ 0 as well, as claimed.

6.F.6. Property (EP8): For every alternating k-linear map f : V k ÑW , there is a unique linear
function ϕ : Vk ÑW such that we have fpx1, . . . , xkq “ ϕpx1^ . . .^ xkq.—Since teS : S P Pkprnsqu
is a basis for Vk, there is a unique linear function ϕ : Vk ÑW such that ϕpeSq “ fpes1 , . . . , esk

q for
all S “ ts1, . . . , sku with s1 ă ¨ ¨ ¨ ă sk. We claim that this function also satisfies ϕpx1 ^ . . .^ xkq “
fpx1, . . . , xkq for all x1, . . . , xk P V . Indeed, consider the map

g : V k ÑW : px1, . . . , xkq ÞÑ ϕpx1 ^ . . .^ xkq.

It is clear that g is k-linear and alternating, and, by definition,

gpes1 , . . . , esk
q “ fpes1 , . . . , esk

q whenever 1 ď s1 ă ¨ ¨ ¨ ă sk ď n. (6.55)

Since both f and g are alternating, (6.55) implies that f and g must agree on arbitrary sequences
of basis vectors. Hence, f “ g by Lemma 6.6.

The proof of Theorem 6.15 is complete.
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6.G. Quantifier elimination
Suppose that A PMmˆnpF q. By definition, the columns of A are independent if and only if

for all x PMnˆ1pF q, if x ‰ 0, then Ax ‰ 0.
Notice that this definition starts with a universal quantifier : Some property must hold for every
single vector in the (possibly infinite) space Mnˆ1pF q. We also know (exercise!) that this property
can be stated equivalently as follows:

there exists a matrix B PMnˆmpF q such that BA “ InpF q.
This reformulation starts with an existential quantifier that is asking us to find a matrix with certain
properties in the (possibly infinite) space MnˆmpF q. When n “ m (i.e., the matrix A is square),
there is a third formulation:

detpAq ‰ 0,
which is quantifier-free: To verify it, we simply need to perform a direct computation that only
involves the entries of A. Exterior products provide a similar quantifier free characterization of
linear independence in the general case (i.e., when n and m may differ):

Theorem 6.56. Let F be a field and let A PMmˆnpF q. Then the columns of A are independent if
and only if there is a set S P Pnprmsq such that detpAS,rnsq ‰ 0.

Example 6.57. We’ve already encountered a special case of this with n “ 2, m “ 3 in Exercise 6.22.

Proof. Set V :“Mnˆ1pF q andW :“Mmˆ1pF q. Let te1, . . . , enu and tf1, . . . , fmu be the standard
bases for V and W , respectively. The columns of A are independent if and only if their exterior
product is nonzero, i.e., if Ae1 ^ . . .^Aen ‰ 0. By Lemma 6.48,

Ae1 ^ . . .^Aen “
ÿ

SPPnprmsq

detpAS,rnsq ¨ fS .

Since tfS : S P Pnprmsqu is a basis for
ŹnW , the last expression is nonzero if and only if at least

one of the coefficients is nonzero, i.e., when detpAS,rnsq ‰ 0 for some S P Pnprmsq, as desired. �

Corollary 6.58 (Rank in terms of determinants). Let F be a field and let A P MmˆnpF q.
Then rankpAq is equal to the largest integer k such that there exist k-element subsets S Ď rms and
T Ď rns with detpAS,T q ‰ 0.

Exercise 6.59. Prove Corollary 6.58.

Remark 6.60. Notice that Corollary 6.58 provides another proof that rankpAq “ rankpAJq.

As an application of Theorem 6.56, we shall establish a connection between linear independence
over Q and over Fp for a prime p. As a motivating example, consider the three vectors

x “

»

–

0
4
2

fi

fl , y “

»

–

2
0
1

fi

fl , z “

»

–

1
2
0

fi

fl P M3ˆ1pZq.

The triple px, y, zq is independent over Q. However, since the entries of x, y, and z are integers, we
can reduce them modulo a prime p and inquire whether the resulting vectors in M3ˆ1pFpq are also
independent over Fp. When p “ 2, we have x “ 0 pmod 2q, and thus the triple px, y, zq loses its
independence in F2. Similarly,

x` y ` z “

»

–

3
6
3

fi

fl “ 0 pmod 3q,

which means that the triple px, y, zq is not independent over F3. Yet, it is independent in Fp for all
primes p ě 5:
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Exercise 6.61. Show that the triple px, y, zq is independent modulo p for all primes p ě 5.

Our question is, what happens in general? In other words, given vectors x1, . . . , xk PMnˆ1pZq
such that the tuple px1, . . . , xkq is independent over Q, what can be said about the independence of
px1, . . . , xkq modulo a prime p? From the above example, we know that there can be finitely many
primes over which the tuple px1, . . . , xkq loses its independence. It turns out that the can be only
finitely many such “bad” primes:

Theorem 6.62. Let x1, . . . , xk PMnˆ1pZq. The following statements are equivalent:
(1) the tuple px1, . . . , xkq is independent over Q;
(2) the tuple px1, . . . , xkq is independent over Fp for some prime p;
(3) the tuple px1, . . . , xkq is independent over Fp for all but finitely many primes p.

Proof. (2) ùñ (1). We will prove the contrapositive of this implication. Suppose that the tuple
px1, . . . , xkq is not independent over Q. This means that there exist rational numbers a1, . . . , ak P Q,
not all of which are zero, such that a1x1 ` ¨ ¨ ¨ ` akxk “ 0. After clearing the denominators, we may
assume that a1, . . . , ak are actually integers. Furthermore, we may assume that gcdpa1, . . . , akq “ 1,
since otherwise we can simply replace each ai with ai{gcdpa1, . . . , akq. With these assumptions, we
see that for all primes p, at least one of a1, . . . , ak is nonzero modulo p, while a1x1` ¨ ¨ ¨ ` akxk “ 0
pmod pq, showing that px1, . . . , xkq is not independent over Fp.

(3) ùñ (2). This implication is trivial.
(1) ùñ (3). This is the interesting (and somewhat surprising) part of the theorem, and this is

where Theorem 6.56 comes in handy. Let A be the n-by-k matrix whose columns are x1, . . . , xk
and suppose that the tuple px1, . . . , xkq is independent over Q. By Theorem 6.56, this means that
there is a set S P Pkprnsq with detpAS,rksq ‰ 0. Since detpAS,rksq is a nonzero integer, there are only
finitely many primes p that divide it, and for all other p, detpAS,rksq ‰ 0 pmod pq, implying, by
Theorem 6.56 again, that the columns of A are independent in Fp, as desired. �

In the above proof of (1) ùñ (3) we tacitly relied on the result of the following exercise:

Exercise 6.63. Let A PMnˆnpZq and let p be a prime number. Let A1 PMnˆnpFpq be the matrix
obtained by reducing each entry of A modulo p. Show that detpAq “ detpA1q pmod pq.

6.H. A combinatorial application: the skew set pairs inequality
In this subsection, we shall establish the following combinatorial fact, which, at first glance, has
little to do with linear algebra (althou it is somewhat reminiscent of Theorem 1.39):

Theorem 6.64 (Skew set pairs inequality; Frankl–Lovász). Suppose that A1, . . . , An are
k-element sets and B1, . . . , Bn are `-element sets such that:

‚ Ai XBi “ ∅ for all 1 ď i ď n; and
‚ Ai XBj ‰ ∅ for all 1 ď i ă j ď n.

Then n ď
`

k``
k

˘

.

A few remarks are in order. First, note that in the statement of Theorem 6.64, there are no
assumption on the size of the ground set

Ťn
i“1pAi YBiq; in other words, the same upper bound on

n is valid regardless of the total number of elements that the sets in the theorem are allowed to
contain. Second, the upper bound n ď

`

k``
k

˘

is best possible. To see this, let
A1, . . . , A

pk``
k q

be all the k-element subsets of rk ` `s and set Bi :“ rk ` `szAi. Third, notice that there is some
asymmetry in how the Ais and the Bis are treated. Specifically, we are only requiring the intersection
Ai X Bj to be nonempty when i ă j, while nothing is said about the case j ă i. This is why
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Theorem 6.64 is referred to as the skew set pairs inequality. The non-skew version, in which
Ai XBj ‰ ∅ whenever i ‰ j, was proved earlier by Bollobás with a clever combinatorial argument.
However, for the skew version, only algebraic proofs are known!

Proof. Without loss of generality, we may assume that all the sets A1, . . . , An, B1, . . . , Bn are
subsets of rN s for some N P N. Using Exercise 5.51, we get a sequence of vectors x1, . . . , xN P Rk``
such that every pk` `q of them are independent. To each Ai we associate an element xAi P

Źk Rk``
given by the formula

xAi
:“ xa1 ^ . . .^ xak

, where Ai “ ta1, . . . , aku with a1 ă ¨ ¨ ¨ ă ak.

Similarly, let xBi P
Ź`Rk`` be given by

xBi
:“ xb1 ^ . . .^ xb`

, where Bi “ tb1, . . . , b`u with b1 ă ¨ ¨ ¨ ă b`.

If 1 ď i ă j ď n, then Ai X Bj ‰ ∅, and so xAi ^ xBj “ 0. On the other hand, xAi ^ xBi is the
wedge product of pk ` `q distinct elements of the sequence x1, . . . , xN , and therefore xAi ^ xBi ‰ 0.
The crux of the argument is in the following observation:

Claim. The tuple pxA1 , . . . , xAnq is independent.

Proof. Suppose not. Then we have
řn
i“1 cixAi “ 0 for some coefficients c1, . . . , cn P R, not all of

which are zero. Let j be the largest index such that cj ‰ 0. Then

0 “
˜

j
ÿ

i“1
cixAi

¸

^ xBj “

j
ÿ

i“1
cipxAi ^ xBj q “ cjpxAj ^ xBj q ‰ 0.

This contradiction completes the proof of the claim. %

From the above claim, we conclude that n ď dim
Źk Rk`` “

`

k``
k

˘

, as desired. �

Extra exercises for Section 6
Exercise 6.65. Let V be a finite-dimensional vector space over a field F and let AltkpV q be the
set of all alternating k-linear maps f : V k Ñ F . Show that AltkpV q, viewed as an F -vector space, is
isomorphic to

Źk V .

Exercise 6.66 (important). Let V be a finite-dimensional vector space over a field F and let v1,
. . . , vk, w1, . . . , wk P V . Suppose that the tuples pv1, . . . , vkq and pw1, . . . , wkq are independent.
Show that Spanptv1, . . . , vkuq “ Spanptw1, . . . , wkuq if and only if v1 ^ . . .^ vk is a nonzero scalar
multiple of w1 ^ . . .^ wk.

7. Polynomials
7.A. Basic properties of polynomials

Polynomials play an extremely important role in algebra in general and in linear algebra in particular.

Example 7.1. If we consider the entries of an n-by-n matrix A as variables, the determinant detpAq
becomes a (multivariate) polynomial. For instance,

det
„

x1 x3
x2 x4



“ x1x4 ´ x2x3.

Even though we have already encountered polynomials on a few occasions in these notes, it
will do us good to briefly review the definition of a polynomial. Let R be a commutative ring. A
polynomial over R in a single variable x is an expression of the form

a0 ` a1x` a2x
2 ` ¨ ¨ ¨ ` anx

n, (7.2)
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where n P N and a0, . . . , an P R. To be more precise, an expression such as (7.2) is a shortcut that
stands for

a0 ` a1x` a2x
2 ` ¨ ¨ ¨ ` anx

n ` 0xn`1 ` 0xn`2 ` ¨ ¨ ¨ (the sum is infinite).
Thus, for example, 1` x and 1` x` 0x2 are two expressions for the same polynomial. If we wanted
to be completely formal, we could say that a one-variable polynomial over R is simply an element of
the set rNÑ Rsă8, i.e., a sequence pa0, a1, a2, . . .q P R

N with only finitely many nonzero entries.
The set of all polynomials over R in a variable x is denoted by Rrxs. Each polynomial p P Rrxs

gives rise to a function RÑ R obtained by evaluating p in the usual way; that is, if
p “ a0 ` a1x` a2x

2 ` ¨ ¨ ¨ ` anx
n,

then for each c P R, we set
ppcq :“ a0 ` a1c` a2c

2 ` ¨ ¨ ¨ ` anc
n,

where addition and multiplication are interpreted as the corresponding operations in R, and we
use the standard abbreviation ck :“ c ¨ c ¨ ¨ ¨ c (k factors). Crucially, two polynomials are considered
equal when they have the same coefficients, and so two distinct polynomials may give rise to the
same function. For example, consider the following two polynomials in F3rxs:

p :“ x3 ` x` 1 and q :“ 2x` 1.
We then have

03 ` 0` 1 “ 2 ¨ 0` 1 “ 1 pmod 3q,
13 ` 1` 1 “ 2 ¨ 1` 1 “ 0 pmod 3q,
23 ` 2` 1 “ 2 ¨ 2` 1 “ 2 pmod 3q,

so ppcq “ qpcq for all c P F3, and yet p ‰ q as polynomials. Nevertheless, we will soon see that if
the ring R is infinite, then any two polynomials that give rise to the same function must, in fact,
coincide as polynomials (see Exercises 7.11 and 7.12).

If p is a polynomial in a variable x, then we write rxksp to indicate the coefficient of p corresponding
to the monomial xk; in other words,

rxkspa0 ` a1x` a2x
2 ` ¨ ¨ ¨ ` anx

nq :“ ak.

Polynomials can be added and multiplied together, which makes Rrxs into a commutative ring in
its own right. Some care has to be taken when defining addition and multiplication of polynomials,
since, as explained above, polynomials cannot, in general, be identified with their corresponding
functions. This means that, given a pair of polynomials p, q P Rrxs, we have to be able to describe
the coefficients of p` q and pq in terms of the coefficients of p and q. This can be done as follows:

rxkspp` qq :“ rxksp` rxksq and rxksppqq :“
k
ÿ

i“0
prxispqprxk´isqq.

Exercise 7.3. Let R be a commutative ring and let p, q P Rrxs be two polynomials. Show that for
all c P R, pp` qqpcq “ ppcq ` qpcq and ppqqpcq “ ppcq ¨ qpcq. Explain why the latter equality might
fail if the ring R is not assumed to be commutative.
Exercise 7.4. Let R be a commutative ring. Show that Rrxs is also a commutative ring.
Exercise 7.5. Let F be a field. Show that F rxs is a vector space over F .

The degree of a nonzero polynomial p P Rrxs, denoted by deg p, is the largest k P N such that
rxksp ‰ 0. By definition, deg 0 :“ ´8. The set of all polynomials over R in a variable x of degree at
most n is denoted by PnpRq. If F is a field, then PnpF q is a subspace of F rxs of dimension n` 1.
Exercise 7.6. Let R be a commutative ring and let p, q P Rrxs. Show that degppqq “ deg p` deg q.
Exercise 7.7 (important). Give a definition of the ring of multivariate polynomials Rrx1, . . . , xks.
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7.B. Polynomial division
Let F be a field. We say that a polynomial q P F rxs divides another polynomial p P F rxs if there is
a polynomial f P F rxs such that p “ fq. If q divides p, then we call q a divisor of p. Notice that if
p ‰ 0, then the degree of every divisor of p is at most deg p. A polynomial p is irreducible if all its
divisors q satisfy deg q “ 0 or deg q “ deg p.

Lemma 7.8 (Polynomial divis ion with remainder). Let F be a field and let p, q P F rxs. If
q ‰ 0, then there exist unique polynomials f (the quotient) and r (the remainder) such that

deg r ă deg q and p “ fq ` r.

Proof. Call a polynomial h P F rxs a potential remainder if there is f P F rxs with p “ fq ` h.
Note that p itself is a potential remainder since p “ 0 ¨ q ` p. Let r be a potential remainder of the
smallest degree. We claim that then deg r ă deg q, proving the existence part of the lemma. Indeed,
since r is a potential remainder, there is f P F rxs with p “ fq ` r, so we only need to show that
deg r ă deg q. Suppose, towards a contradiction, that deg r ě deg q. Let

a :“ rxdeg qsq and b :“ rxdeg rsr,

and consider the polynomial r1 :“ r ´ pb{aqxdeg r´deg qq. By construction, deg r1 ă deg r; but
p “ fq ` r “ pf ` pb{aqxdeg r´deg qqq ` r1,

so r1 is a potential remainder, which contradicts our choice of r. For the uniqueness part, suppose
that p “ f1q ` r1 “ f2q ` r2, where deg r1, deg r2 ă deg q. Then pf1 ´ f2qq “ r1 ´ r2, and hence q
is a divisor of r1 ´ r2. Since deg q ą degpr1 ´ r2q, this is only possible is r1 ´ r2 “ 0, as desired. �

A root of a polynomial p P F rxs is any element c P F such that ppcq “ 0. The following properties
of roots follow easily from Lemma 7.8:

Exercise 7.9. Let F be a field and let p P F rxs. Show that if c P F is a root of p, then the
polynomial x´ c is a divisor of p.

Exercise 7.10 (Baby Bézout’s theorem). Let F be a field and let p P F rxs be a nonzero
polynomial. Show that p can have at most deg p distinct roots.

Exercise 7.11. Suppose that F is an infinite field and p, q P F rxs are polynomials such that
ppcq “ qpcq for all c P F . Show that p “ q as polynomials.

Exercise 7.12. Suppose that R is an infinite commutative ring (but not necessarily a field) and
let p, q P Rrxs be polynomials such that ppcq “ qpcq for all c P R. Show that p “ q as polynomials.
Hint: Make sure that the conclusion of Lemma 7.8 holds over R when q “ x´ c for some c P R.

Let p, q P F rxs. A polynomial s P F rxs is a greatest common divisor (or a gcd) of p and q if s
divides both p and q, and whenever t P F rxs divides both p and q, t also divides s.

Exercise 7.13. Show that if s1 and s2 are gcds of p, q P F rxs, then s1 “ as2 for some a P F zt0u.

The following result is one of the most fundamental properties of polynomials over a field:

Theorem 7.14 (Eucl idean algorithm for polynomials). Let F be a field and let p, q P F rxs.
If at least one of p and q is nonzero, then p and q have a gcd s P F rxs; furthermore, there exist
polynomials u, v P F rxs such that up` vq “ s.

Proof. Without loss of generality, assume that p ‰ 0 and deg p ě deg q. We argue by induction
on deg q. If deg q “ ´8, i.e., if q “ 0, then we can take s “ p, u “ 1, and v “ 0. Now suppose that
q ‰ 0. By Lemma 7.8, we can write p “ fq` r with f , r P F rxs and deg r ă deg q. By the inductive
assumption, q and r have a gcd s, and there exist polynomials g and h such that gq ` hr “ s.

Exercise 7.15. Show that s is also a gcd of p and q.
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Hence, p and q have a gcd. Furthermore,
s “ gq ` hr “ gq ` hpp´ fqq “ hp` pg ´ hfqq,

so we can take u “ h and v “ g ´ hf . �

A polynomial s P F rxs is monic if s ‰ 0 and rxdeg sss “ 1. Given two polynomials p, q P F rxs, at
least one of which is nonzero, we write gcdpp, qq for the unique monic gcd of p and q.

Example 7.16. Let p :“ x3 ` x` 1, q :“ 2x` 1. Viewing p and q as polynomials over R, we have

gcdpp, qq “ 1, and 8
3 ¨ p `

ˆ

´
4
3x

2 `
2
3x´

5
3

˙

¨ q “ 1.

On the other hand, if we think of p and q as polynomials over F3, then p “ p2x2 ` 2x` 1qq, so
gcdpp, qq “ x` 2, and 0 ¨ p` 2 ¨ q “ x` 2.

Exercise 7.17. Working over R, compute gcdpx2 ` 1, x3 ` 1q and find polynomials u and v such
that u ¨ px2 ` 1q ` v ¨ px3 ` 1q “ gcdpx2 ` 1, x3 ` 1q.

Exercise 7.18. Same as Exercise 7.17, but working over F2 instead.

The notion of a gcd extends naturally to more than two polynomials. Let p1, . . . , pk P F rxs. A
polynomial s P F rxs is a greatest common divisor (or a gcd) of p1, . . . , pk if s divides all of p1,
. . . , pk, and whenever t P F rxs divides all of p1, . . . , pk, t also divides s.

Exercise 7.19 (Eucidean algorithm for several polynomials). Prove the following extension
of Theorem 7.14 to several polynomials: Let F be a field and let p1, . . . , pk P F rxs. If at least one
of p1, . . . , pk is nonzero, then p1, . . . , pk have a gcd s P F rxs; furthermore, there exist polynomials
u1, . . . , uk P F rxs such that u1p1 ` ¨ ¨ ¨ ` ukpk “ s.

7.C. The resultant
Let F be a field and let p, q P F rxs be two nonzero polynomials. A least common multiple (or an
lcm) of p and q is a nonzero polynomial s P F rxs such that p and q both divide s, and whenever p
and q both divide some t P F rxs, s also divides t.

Lemma 7.20 (Least common multiples). Let F be a field and let p, q P F rxs be two nonzero
polynomials. Then p and q have an lcm, namely the polynomial pq{gcdpp, qq.

Proof. Clearly,
pq{gcdpp, qq “ p ¨ pq{gcdpp, qqq “ q ¨ pp{gcdpp, qqq

is divisible by p and q. What remains to show is that if f P F rxs is a polynomial divisible by p and
q, then f is also divisible by pq{gcdpp, qq, or, equivalently, f ¨ gcdpp, qq is divisible by pq. To that
end, write gcdpp, qq “ up` vq for some u, v P F rxs. Then

f ¨ gcdpp, qq “ f ¨ pup` vqq “ ufp` vfq.

Since f is divisible by q, fp is divisible by pq. Similarly, since f is divisible by p, fq is also divisible
by pq. Thus, f ¨ gcdpp, qq is divisible by pq, and we are done. �

Suppose we are given a pair of nonzero polynomials p, q P F rxs. We shall use linear-algebraic
tools to tackle the following general problem:

How can we decide whether gcdpp, qq ‰ 1, that is, whether p and q have a nontrivial
common divisor?

For concreteness, let n :“ deg p and m :“ deg q and write
p “ a0 ` a1x` ¨ ¨ ¨ ` anx

n and q “ b0 ` b1x` ¨ ¨ ¨ ` bmx
m.
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Exercise 7.21. Deduce from Lemma 7.20 that gcdpp, qq ‰ 1 if and only if there exist nonzero
polynomials u, v P F rxs such that

deg u ď m´ 1, deg v ď n´ 1, and up` vq “ 0.

In view of Exercise 7.21, it makes sense to consider the function

ϕp,q : Pm´1pF q ‘ Pn´1pF q Ñ Pn`m´1pF q : pu, vq ÞÑ up` vq.

This function is linear, and, by Exercise 7.21, we have gcdpp, qq ‰ 1 if and only if kerpϕp,qq ‰ t0u.
Notice that since

dimpPm´1pF q ‘ Pn´1pF qq “ dimPn`m´1pF q “ n`m,

we have kerpϕp,qq ‰ t0u if and only if ϕp,q is not a bijection.
The next step is to compute a matrix corresponding to ϕp,q. Specifically, let

X :“ pp1, 0q, px, 0q, px2, 0q, . . . , pxm´1, 0q, p0, 1q, p0, xq, p0, x2q, . . . , p0, xn´1qq

be the “obvious” ordered basis for Pm´1pF q ‘ Pn´1pF q and let

Y :“ p1, x, x2, . . . , xn`m´1q

be the ordered basis for Pn`m´1pF q. The matrix rϕp,qsX,Y that expresses ϕp,q with respect to these
bases is called the Sylvester matrix18 of p and q and is denoted by Sylpp, qq. Note that Sylpp, qq
is an pn `mq-by-pn `mq matrix. It is not hard to describe the entries of the Sylvester matrix
explicitly. Indeed, by definition, the first column of Sylpp, qq is

rϕp,qp1, 0qsY “ r1 ¨ p` 0 ¨ qsY “ rpsY “
“

a0 a1 a2 ¨ ¨ ¨ an 0 ¨ ¨ ¨ 0
‰J
,

ending with m´ 1 zeros. Similarly, the second column of Sylpp, qq is

rϕp,qpx, 0qsY “ rx ¨ p` 0 ¨ qsY “ rxpsY “
“

0 a0 a1 ¨ ¨ ¨ an 0 ¨ ¨ ¨ 0
‰J
,

now ending with only m´ 2 zeros; and so on. The first m columns of Sylpp, qq are

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a0
a1
a2
...
an
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
a0
a1
...

an´1
an
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
a0
...

an´2
an´1
an
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, . . . ,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
0
...
a0
a1
a2
...
an

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

18Named after James Joseph Sylvester, a 19th century mathematician who, among other things, laid the foundations
of modern linear algebra. In particular, he introduced the term “matrix.”
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Analogously, the remaining n columns are
»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

b0
b1
b2
...
bm
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
b0
b1
...

bm´1
bm
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
b0
...

bm´2
bm´1
bm
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, . . . ,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
0
...
b0
b1
b2
...
bm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Example 7.22. If p “ x3 ` x` 1 and q “ 2x` 1, then deg p “ 3 and deg q “ 1, so Sylpp, qq is a
4-by-4 matrix; namely

Sylpp, qq “

»

—

—

–

1 1 0 0
1 2 1 0
0 0 2 1
1 0 0 2

fi

ffi

ffi

fl

.

The resultant of p and q is defined by the formula respp, qq :“ detpSylpp, qqq. It is immediate
from this definition that ϕp,q is bijective if and only if respp, qq ‰ 0. Hence, we have the following:

Theorem 7.23 (Sylvester). Let F be a field and let p, q P F rxs be nonzero polynomials. Then we
have gcdpp, qq ‰ 1 if and only if respp, qq “ 0. �

Example 7.24. Continuing Example 7.22, if p “ x3 ` x` 1 and q “ 2x` 1, then

respp, qq “ det

»

—

—

–

1 1 0 0
1 2 1 0
0 0 2 1
1 0 0 2

fi

ffi

ffi

fl

“ 3.

Hence, gcdpp, qq “ 1 when p and q are viewed as polynomials over R. On the other hand, over F3
we have gcdpp, qq ‰ 1, since 3 “ 0 pmod 3q (see Example 7.16).

Notice that respp, qq is itself a (multivariate) polynomial in terms of the coefficients of p and q.
For instance, when n “ 2 and m “ 1, we have

respp, qq “ det

»

–

a0 b0 0
a1 b1 b0
a2 0 b1

fi

fl “ a0b
2
1 ` a2b

2
0 ´ a1b0b1,

which is a polynomial in a0, a1, a2, b0, b1. This fact will turn out to be important later on.

7.D. Multiple roots and derivatives
Let F be a field and let p P F rxs and c P F . We already know (from Exercise 7.9) that c is a root of
p if and only if x´ c divides p.

Definition 7.25. Let F be a field and let p P F rxs be a nonzero polynomial. Suppose that c P F is
a root of p. The multiplicity of c is the largest integer k such that the polynomial px´ cqk divides
p. If the multiplicity of c is at least 2, then c is called a multiple root of p; otherwise (i.e., if the
multiplicity of c is precisely 1), c is called a simple root.

You should know from calculus that there is a simple criterion for when c P R is a multiple root
of a polynomial p P Rrxs: c is a multiple root of p if and only if ppcq “ p1pcq “ 0, where p1 is the
derivative of p. It turns out that this criterion, correctly interpreted, can be extended to polynomials
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over an arbitrary field. Of course, the usual “ε–δ” definition of the derivative doesn’t make much
sense in an arbitrary field (what would it mean in a finite field, for example?), but we can define
derivatives of polynomials without invoking limits, by simply declaring the derivative of p to be
what we know it “ought to be”:19

Definition 7.26. Let F be a field and let p “
ř

k akx
k be a polynomial over F in a variable x. The

derivative of p is the polynomial p1 given by

p1 :“
ÿ

k

pkakqx
k´1,

where kak is, as usual, a shortcut for ak ` ¨ ¨ ¨ ` ak (k summands).

Example 7.27. Let p be a prime number. Viewing xp as a polynomial over Fp, we get

pxpq1 “ pxp´1 “ 0 pmod pq.

Hence, xp is a polynomial over Fp of degree p ą 0 whose derivative is zero.

Exercise 7.28. Let F be a field of characteristic zero and let p P F rxs be polynomial of positive
degree. Show that p1 ‰ 0 and, in fact, deg p1 “ deg p´ 1. (In other words, the situation described
in Example 7.27 cannot occur in a field of characteristic zero.)

Exercise 7.29. Let F be a field and let p, q P F rxs. Show that pp` qq1 “ p1 ` q1.

Lemma 7.30 (Product rule). Let F be a field and let p, q P F rxs. Then ppqq1 “ p1q ` pq1.

Proof. It is enough to consider the case when p “ xk and q “ x` for some k, ` P N (why?). We
simply compute and compare both sides:

ppqq1 “ pxk ¨ x`q1 “ pxk``q1 “ pk ` `qxk``´1;

p1q ` pq1 “ pxkq1x` ` xkpx`q1 “ pkxk´1qx` ` xkp`x`´1q “ pk ` `qxk``´1. �

Theorem 7.31. Let F be a field and let p P F rxs be a nonzero polynomial. Then c P F is a multiple
root of p if and only if ppcq “ p1pcq “ 0.

Proof. If ppcq “ 0, then we can write p “ px ´ cqq for some polynomial q P F rxs, and c is a
multiple root of p if and only if qpcq “ 0. Using the product rule, we get

p1 “ ppx´ cqqq1 “ q ` px´ cqq1.

Hence, p1pcq “ qpcq. In particular, qpcq “ 0 if and only if p1pcq “ 0, as desired. �

For a polynomial p P F rxs, let ppkq denote the k-th derivative of p, i.e., let ppkq :“ p2¨¨¨1 (k primes).

Exercise 7.32. Let F be a field of characteristic 0 and let p P F rxs be a nonzero polynomial. Show
that c P F is a root of p of multiplicity k if and only if

ppcq “ p1pcq “ ¨ ¨ ¨ “ ppk´1qpcq “ 0 and ppkqpcq ‰ 0.

In Exercise 7.32, it is important to assume that the characteristic of F is 0 (since in a field of positive
characteristic, the derivative of a polynomial of positive degree can be zero—see Example 7.27).

Exercise 7.33. Let F be a field of characteristic p ą 0 and let f P F rxs. Show that f ppq “ 0.

19This philosophy plays a significant role in the area of algebraic geometry, which is often concerned with extending
“geometric” or “analytic” concepts to more general “algebraic” settings.
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7.E. Algebraically closed fields
A field F is algebraically closed if every polynomial p P F rxs of degree at least 1 has at least one
root in F .

Example 7.34. The field R is not algebraically closed, because the polynomial x2 ` 1 has no real
roots. The field F2 is also not algebraically closed, because x2 ` x` 1 has no roots in F2.

Exercise 7.35. Show that every algebraically closed field is infinite. Hint: Let F be a finite field
and consider the polynomial 1`

ś

aPF px´ aq.

The following theorem, called the fundamental theorem of algebra, gives the main example of an
algebraically closed field:

Theorem 7.36 (Fundamental theorem of algebra). The field C of complex numbers is
algebraically closed.

Exercise 7.37. Use Theorem 7.36 and Exercise 4.27 to show that the field Q of algebraic numbers
is algebraically closed.

There are many proofs of Theorem 7.36, most of which rely on facts from complex analysis. We
will not prove Theorem 7.36 in these notes.

Even though C is the most familiar algebraically closed field, there are many others. In particular,
the characteristic of an algebraically closed field can by positive (recall that if the characteristic of a
field F is p ą 0, then p ¨ 1 “ 0 in F ).

Theorem 7.38. Let F be a field. Then there is an algebraically closed field extension K Ě F of F .

We won’t prove Theorem 7.38 here either.

Lemma 7.39. Let F be an algebraically closed field and let p P F rxs be a polynomial of degree n ě 1.
Then p splits in F , i.e., there exist elements a, a1, . . . , an P F such that p “ apx´ a1q ¨ ¨ ¨ px´ anq.

Exercise 7.40. Prove Lemma 7.39.

Exercise 7.41. Let F be an algebraically closed field and let p, q P F rxs be nonzero polynomials.
Show that gcdpp, qq ‰ 1 if and only if p and q have a common root.

Corollary 7.42. Let F be an algebraically closed field and let p P F rxs be a nonzero polynomial.
Suppose that p1 ‰ 0. Then p has a multiple root if and only if respp, p1q “ 0. �

Example 7.43. Let F be an algebraically closed field and let p P F rxs be a polynomial of degree 2:
p “ a0 ` a1 ` a

2
2,

where a0, a1, a2 P F , a2 ‰ 0. If charpF q ‰ 2, then p1 “ a1 ` 2a2x is a polynomial of degree 1, and

respp, p1q “ det

»

–

a0 a1 0
a1 2a2 a1
a2 0 2a2

fi

fl “ a2p4a0a2 ´ a
2
1q.

Since a2 ‰ 0, we recover the familiar fact that p has a multiple root if and only if 4a0a2 ´ a
2
1 “ 0.

7.F. The Schwartz–Zippel lemma
Let F be a field and let p P F rx1, . . . , xns be a polynomial over F in n variables; that is, p is a
combination of finitely many monomials (i.e., expressions of the form xt11 ¨ ¨ ¨x

tn
n with t1, . . . , tn P N)

with coefficients in F . The degree of a monomial xt11 ¨ ¨ ¨xtnn is

degpxt11 ¨ ¨ ¨xtnn q :“ t1 ` ¨ ¨ ¨ ` tn,
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and the (total) degree of p, denoted by deg p, is the largest degree of a monomial appearing in p
with a nonzero coefficient. For instance,

degpx1x
2
2 ` x

2
1x2 ´ 2x1 ´ 2x2 ` 3q “ 3.

As usual, the degree of the zero polynomial is, by convention, equal to ´8.

Exercise 7.44. Let Pd,npF q denote the F -vector space of all polynomials over a field F in n variables
of degree at most d. Show that

dimPd,npF q “

ˆ

n` d

n

˙

.

Hint: https://youtu.be/w0i_ZFlGTVY.

Example 7.45. The monomials in n variables of degree at most d form a basis for Pd,npF q. Hence,
for example, a basis for P2,2pF q is

t1, x1, x2, x
2
1, x1x2, x

2
2u,

and thus the dimension of the space P2,2pF q is 6, which is indeed equal to
`2`2

2
˘

.

Let p P F rx1, . . . , xns. The zero locus of p is the set
ZF ppq :“ tpc1, . . . , cnq P F

n : ppc1, . . . , cnq “ 0u.

Theorem 7.46 (Schwartz–Zippel lemma). Let F be a field and let p P F rx1, . . . , xns be a
nonzero polynomial in n variables of degree at most d. Let S Ď F be a nonempty finite set. Then

|ZF ppq X S
n| ď d|S|n´1.

Equivalently, if we choose n elements c1, . . . , cn P S independently and uniformly at random, then

Prppc1, . . . , cnq “ 0s ď d

|S|
.

Corollary 7.47. Let F be an infinite field and let p P F rx1, . . . , xns. If ZF ppq “ Fn (in other words,
if ppcq “ 0 for all c P Fn), then p “ 0 as a polynomial.

Proof. Suppose that p ‰ 0 and let d :“ deg p. Let S be any finite subset of F of size greater
than d. Then, with probability at least 1 ´ d{|S| ą 0, a random tuple pc1, . . . , cnq P S

n satisfies
ppc1, . . . , cnq ‰ 0, meaning that the zero locus of p cannot be all of Fn. �

Corollary 7.48. Let F be an infinite field and let p1, . . . , pk P F rx1, . . . , xns be a finite collection
of polynomials. If ZF pp1q Y . . .Y ZF ppkq “ Fn, then pi “ 0 for some 1 ď i ď k.

Proof. Follows from the observation that ZF pp1q Y . . .Y ZF ppkq “ ZF pp1 ¨ ¨ ¨ pkq. �

What makes Corollary 7.47 particularly useful is that it allows one to show that two polynomials
are equal (i.e., their difference is the zero polynomial) without explicitly computing and comparing
their coefficients. Consider, for example, the product rule for derivatives:

ppqq1 “ p1q ` pq1. (7.49)
If we write p “ a0 ` a1x` ¨ ¨ ¨ ` anx

n and q “ b0 ` b1x` ¨ ¨ ¨ ` bmx
m, then both ppqq1 and p1q ` pq1

can be viewed as polynomials in the variables x, a0, . . . , an, b0, . . . , bm with integer coefficients.
For instance, when n “ m “ 2, both these polynomials are equal to

a0b1 ` a1b0 ` 2a0b2x` 2a1b1x` 2a2b0x` 3a1b2x
2 ` 3a2b1x

2 ` 4a2b2x
3.

Now, we know from calculus that the product rule holds for polynomials with real coefficients. This
means that the two multivariate polynomials representing the two sides of (7.49) take the same
value for every choice of x, a0, . . . , an, b0, . . . , bm P R. But then, by Corollary 7.47, this shows that
they must be equal as polynomials. In particular, if we now plug in values for the coefficients a0,

https://youtu.be/w0i_ZFlGTVY
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. . . , an, b0, . . . , bm from any field F whatsoever, we would get two equal polynomials in x over F .
In other words, the product rule (7.49) must hold over every field20. Of course, in this particular
example, it is easy enough to compute the two sides of (7.49) explicitly (as is done in the proof of
Lemma 7.30). However, we will soon encounter situations where explicit computation is too difficult,
and the above proof strategy becomes indispensable.

Proof of Theorem 7.46. The proof is by induction on n. For n “ 1, Theorem 7.46 says that
if p P F rxs is a nonzero univariate polynomial of degree at most d, then it has at most d roots—but
this we already know (see Exercise 7.10). Now assume that n ą 1 and that the Schwartz–Zippel
lemma holds for all polynomials in fewer than n variables. Let p P F rx1, . . . , xns be a nonzero
polynomial of degree at most d. Let k be the largest degree in which the variable xn appears in p
(it is possible that k “ 0). We can write (uniquely)

p “ p0 ` p1xn ` p2x
2
n ` ¨ ¨ ¨ ` pkx

k
n,

where p0, . . . , pk are polynomials in x1, . . . , xn´1. Note that, by the choice of k, pk is a nonzero
polynomial. Furthermore, deg pk ď d´ k. If we plug in any specific values, say c1, . . . , cn´1, for x1,
. . . , xn´1 into p, then ppc1, . . . , cn´1, xnq becomes a polynomial in a single variable xn of degree at
most k. Such a polynomial can have at most k roots—unless it’s the zero polynomial, which can
only happen when pkpc1, . . . , cn´1q “ 0. This motivates splitting the set ZF ppq X S

n as follows:
|ZF ppq X S

n| “ |tpc1, . . . , cnq P S : ppc1, . . . , cnq “ 0 and pkpc1, . . . , cn´1q ‰ 0u|
` |tpc1, . . . , cnq P S : ppc1, . . . , cnq “ 0 and pkpc1, . . . , cn´1q “ 0u|.

Set
N1 :“ |tpc1, . . . , cnq P S : ppc1, . . . , cnq “ 0 and pkpc1, . . . , cn´1q ‰ 0u|;
N2 :“ |tpc1, . . . , cnq P S : ppc1, . . . , cnq “ 0 and pkpc1, . . . , cn´1q “ 0u|.

To upper bound N1, observe that there are (trivially) at most |S|n´1 choices for pc1, . . . , cn´1q, and
for each such choice, assuming that pkpc1, . . . , cn´1q ‰ 0, there are at most k choices for cn (since
the polynomial ppc1, . . . , cn´1, xnq can have at most k roots). Thus, we have

N1 ď |S|n´1 ¨ k.

On the other hand, to upper bound N2, notice that, by the inductive hypothesis applied to pk,
there are at most pd ´ kq|S|n´2 choices for pc1, . . . , cn´1q with pkpc1, . . . , cn´1q “ 0, and for each
such choice there can be (trivially) at most |S| choices for cn. Therefore,

N2 ď pd´ kq|S|n´2 ¨ |S| “ pd´ kq|S|n´1.

Hence,
|ZF ppq X S

n| “ N1 `N2 ď |S|n´1k ` pd´ kq|S|n´1 “ d|S|n´1,

and we are done. �

7.G. Application: identity testing
At this point, it would be amiss not to mention the numerous applications of the Schwartz–Zippel
lemma in computer science. It often happens that a computational problem can be reduced to the
question of whether or not two multivariate polynomials are equal. Calculating and comparing the
coefficients of the polynomials in question can sometimes be too time-consuming; on the other hand,
evaluating the given polynomials at a particular input may be more feasible. The Schwartz–Zippel
lemma then gives an upper bound on the probability that two distinct polynomials will take the
same value at a random input, which can then be used to show that the two given polynomials are
equal—if not with certainty, then it least with overwhelming probability.

20And even over every commutative ring.
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The approach is best explained with the help of an example. Consider the following problem:
Let ‹ be a binary operation on an n-element set X. Is this operation associative?

In other words, we are given an n-by-n multiplication table for a binary operation ‹, and our goal is
to decide, as efficiently as we can, whether ‹ is associative, i.e., whether we have

px ‹ yq ‹ z “ x ‹ py ‹ zq for all x, y, z P X.
We say that px, y, zq P X3 is a nonassociative triple if

px ‹ yq ‹ z ‰ x ‹ py ‹ zq,

so our question can be restated as, is there a nonassociative triple for ‹?

Example 7.50. Let X :“ t1, . . . , nu, where n ě 3, and define a binary operation ‹ on X by

i ‹ j :“
#

3 if pi, jq ‰ p1, 2q;
2 if pi, jq “ p1, 2q.

Then the operation ‹ is nonassociative, and it has only one nonassociative triple, namely p1, 1, 2q.

An obvious algorithm for this problem is to test every single triple px, y, zq P X3 for nonassociativity.
Since there are n3 triples to check, this algorithm requires roughly n3 steps. It turns out that if we
can handle a small probability of making a mistake, then there is a much faster approach:

Theorem 7.51 (Rajagopalan–Schulman). Suppose that we are given a multiplication table for a
binary operation ‹ on an n-element set X. There is a randomized algorithm with running time
Opn2q that outputs an answer Yes or No so that:

‚ if the operation ‹ is associative, the answer is always Yes;
‚ if the operation ‹ is nonassociative, then the answer is No with probability at least 1{2.

Remark 7.52. It may seem like 1{2 is a rather high probability of making a mistake. However,
this probability can be made arbitrarily small by simply running the same algorithm several times.
For instance, suppose that we run the algorithm twenty times in a row. This produces a sequence
of twenty Yes/No answers. If at least one of the answers was No, we would know for sure that the
operation ‹ is nonassociative. On the other hand, if all twenty answers were Yes, then we should
feel fairly confident that ‹ is actually associative. Indeed, if ‹ weren’t associative, then each one of
the answers would be Yes with probability at most 1{2, so the probability of answering Yes twenty
times in a row is at most p1{2q20, which is less than one in a million.

Proof. The difficulty of the problem is that even if ‹ is nonassociative, it can still have only
very few nonassociative triples (see Example 7.50). The idea is to use a bit of linear algebra to
construct a new binary operation based on ‹ in such a way that if ‹ is associative, then so is the new
operation, while if ‹ is nonassociative, then at least half of the possible inputs for the new operation
form nonassociative triples.

Let F be a field of size at least 7 (in practice, it is convenient to make F a finite field, say F7).
We may then view the n-element set X “ te1, . . . , enu as a basis for an n-dimensional vector space
V over F . We extend ‹ to a bilinear operation on V in the usual way:

˜

n
ÿ

i“1
aiei

¸

‹

˜

n
ÿ

j“1
bjej

¸

:“
n
ÿ

i“1

n
ÿ

j“1
paibjqpei ‹ ejq. (7.53)

Exercise 7.54. Show that the extended operation ‹ on V is associative if and only if so is the
original operation ‹ on X.

Note that, given the coordinates of two vectors x, y P V , we can use formula (7.53) to compute
the coordinates of the vector x ‹ y in Opn2q steps (why?). And here’s the randomized algorithm for
testing associativity:
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‚ Fix a set S Ď F of size 6.
‚ Choose elements a1, . . . , an, b1, . . . , bn, c1, . . . , cn P S independently and uniformly at
random and set

x :“
n
ÿ

i“1
aiei, y :“

n
ÿ

j“1
bjej , and z :“

n
ÿ

k“1
ckek.

‚ Compute the vectors px ‹ yq ‹ z and x ‹ py ‹ zq. If the results are equal, output Yes; otherwise,
output No.

The most time-consuming part of this procedure is computing the coordinates of the vectors px‹yq‹z
and x ‹ py ‹ zq, as this requires performing the operation ‹ on elements of V four times—but this
still amounts to Opn2q steps.

Obviously, if the operation ‹ is associative, the above algorithm always outputs Yes. Now suppose
that ‹ is nonassociative. We have to prove that the probability that the algorithm’s answer is Yes
in this case is at most 1{2.

Since we are assuming that ‹ is nonassociative, there exist indices 1 ď α, β, γ ď n such that
e` :“ peα ‹ eβq ‹ eγ ‰ eα ‹ peβ ‹ eγq “: em.

Let ppx, y, zq denote the coefficient of e` in px ‹ yq ‹ z. Since we have

px ‹ yq ‹ z “

˜˜

n
ÿ

i“1
aiei

¸

‹

˜

n
ÿ

j“1
bjej

¸¸

‹

˜

n
ÿ

k“1
ckek

¸

“

n
ÿ

i“1

n
ÿ

j“1

n
ÿ

k“1
paibjckqppei ‹ ejq ‹ ekq,

we conclude that
ppx, y, zq “

ÿ

pei‹ejq‹ek “ e`

aibjck,

where the sum is over all triples of indices pi, j, kq such that pei ‹ ejq ‹ ek “ e`. In particular, p is a
polynomial in the 3n variables a1, . . . , an, b1, . . . , bn, c1, . . . , cn of degree 3. (Note that p ‰ 0 since
the monomial eαeβeγ appears in p with coefficient 1.) Similarly, if we let qpx, y, zq be the coefficient
of e` in x ‹ py ‹ zq, then

qpx, y, zq “
ÿ

ei‹pej‹ekq“ e`

aibjck,

which is also a polynomial in of degree at most 3. (We say “at most 3” because q may be zero.) By
the choice of α, β, and γ, we have

ppeα, eβ, eγq “ 1 ‰ 0 “ qpeα, eβ, eγq,

so the polynomials p and q are distinct. This means that p´ q is a nonzero polynomial of degree
at most 3, and thus, by the Schwartz–Zippel lemma, the probability that ppx, y, zq “ qpx, y, zq for
randomly chosen x, y, z P Sn is at most 3{|S| “ 3{6 “ 1{2, as desired. �

Extra exercises for Section 7
Exercise 7.55. For this exercise, we need to define resultants of multivariate polynomials. Let
F be a field and let p, q P F rx1, . . . , xns be a pair of nonzero polynomials over F in n variables.
For each 1 ď i ď n, we may consider p and q as polynomials in xi whose coefficients are, in turn,
polynomials in the remaining n´ 1 variables. This allows us to compute the resultant of p and q
with respect to the variable xi, denoted by resxipp, qq. For instance,

resxpx2 ` y2 ` z2, xyzq “ det

»

–

y2 ` z2 0 0
0 yz 0
1 0 yz

fi

fl “ y4z2 ` y2z4.

Note that resxipp, qq is itself a polynomial over F in the remaining n´ 1 variables.
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In this exercise we work over C. Given a pair of polynomials f , g P Crts of degree at least 1, we
consider the set Sf,g Ď C2 parameterized by f and g:

Sf,g :“ tpx, yq P C2 : x “ fptq, y “ gptq for some t P Cu.

(a) Consider the polynomials x´ fptq and y´ gptq in the three variables t, x, y. Let p P Crx, ys
be the polynomial given by the formula

p :“ restpx´ fptq, y ´ gptqq.

Show that Sf,g is the zero locus of p.
(b) Find a polynomial p P Crx, ys whose zero locus is parameterized by the polynomials

fptq “ t2 ` t and gptq “ t3 ` t.

Exercise 7.56 (Kakeya problem over a f inite f ie ld). For this exercise, F is a finite field of
size q. A subset E Ď Fn is called a Kakeya set21 if it “contains a line in every direction,” i.e., if for
each nonzero vector v P Fn, there is some a P E such that

ta` tv : t P F u Ď E.

Our goal is to establish the following lower bound on the size of a Kakeya set:

Theorem 7.57 (Dvir). If E Ď Fn is a Kakeya set, then

|E| ě

ˆ

q ` n´ 1
n

˙

.

Notice that
`

q`n´1
n

˘

ě qn{n! “ p1{n!q|Fn|, so it follows from Theorem 7.57 that a Kakeya set must
occupy at least a p1{n!q proportion of the entire space Fn, regardless of the size of the finite field F .

Suppose, towards a contradiction, that E Ď Fn is a Kakeya set such that |E| ă
`

q`n´1
n

˘

.
(a) Show that there is a nonzero polynomial p P F rx1, . . . , xns of degree d ă q such that

E Ď ZF ppq. Hint: Compare the dimension of the space of all polynomials in n variables of
degree less than q with that of the space FE of all functions from E to F .

Let p be the polynomial obtained in part (a) and let d :“ deg p. Write

p “ p0 ` p1 ` ¨ ¨ ¨ ` pd,

where pi is the i-th homogeneous component of p, i.e., the polynomial obtained from p by only
retaining the monomials of degree i. By definition, pd ‰ 0 and d ě 1.

Take any nonzero vector v “ pv1, . . . , vnq P F
n and let a “ pa1, . . . , anq P E be such that

ta` tv : t P F u Ď E.

(Such a exists because E is a Kakeya set.) Define fv,a P F rts to be the polynomial given by

fv,aptq :“ ppa` tvq “ ppa1 ` tv1, . . . , an ` tvnq.

(b) Show that fv,a is the zero polynomial.
(c) Show that rtdsfv,a “ pdpvq, and hence pdpvq “ 0 for all v P Fn.
(d) Finish the proof of Theorem 7.57. Hint: Use Schwartz–Zippel.

21Named after the Japanese mathematician Sōichi Kakeya.



78 LINEAR ALGEBRA

8. Classification of linear transformations
8.A. Conjugacy

Let V be a vector space over a field F . A (linear) transformation of V is a map ϕ P LinpV, V q. We
can view the pair pV, ϕq as an algebraic structure in its own right, and there is a natural notion of
isomorphism for such structures. Namely, if W is another vector space over F and ψ P LinpW,W q,
then the structures pV, ϕq and pW,ψq as isomorphic if there is a linear bijection π : V Ñ W (an
isomorphism) such that for all x P V ,

πpϕpxqq “ ψpπpxqq;
or, to put it more concisely,

π ˝ ϕ “ ψ ˝ π.

The diagram below illustrates this situation:

V V

W W

ϕ

ψ

π ππ ˝ ϕ “ ψ ˝ π

For the structures pV, ϕq and pW,ψq to be isomorphic in the above sense, the vector spaces V and
W must themselves be isomorphic. Therefore, it is convenient to assume that V “ W and just
compare pairs of transformations ϕ, ψ P LinpV, V q. This motivates the following definition:

Definition 8.1. Let V be a vector space over a field F . We say that linear transformations ϕ,
ψ P LinpV, V q are conjugate, in symbols ϕ – ψ, if there is a linear bijection π : V Ñ V such that

π ˝ ϕ “ ψ ˝ π.

There are a number of equivalent ways to define conjugacy of transformations ϕ, ψ P LinpV, V q.
For instance, ϕ – ψ if and only if there is a linear bijection π : V Ñ V such that ψ “ π ˝ ϕ ˝ π´1.
Also, we have ϕ – ψ if and only if there exist bases X, Y for V such that rϕsX,X “ rψsY,Y (why?).

Our goal in this section is to classify transformations ϕ P LinpV, V q up to conjugacy, provided
that the space V is finite-dimensional and the field F is algebraically closed. When dimV “ n,
transformations of V can be identified with n-by-n matrices over F , and so we will freely switch
between working with transformations and with matrices. Thus, for example, we say that two
matrices A, B P MnˆnpF q are conjugate if there is a matrix C P MnˆnpF q of rank n such that
CA “ BC. Also, describing a transformation ϕ P LinpV, V q of an n-dimensional space V up to
conjugacy is tantamount to finding a basis X for V in which the matrix rϕsX,X has a particularly
simple form.

Example 8.2. If dimV “ 1, then every linear transformation of V has the form x ÞÑ ax for a fixed
scalar a P F , and it is clear that any such transformation is only conjugate to itself.

Example 8.3. Already in the case when dimV “ 2, the situation becomes somewhat complicated.
We will show that if F is algebraically closed, then for each transformation ϕ P LinpV, V q of a 2-
dimensional F -vector space V , there is a basis X “ px1, x2q for V in which the matrix rϕsX,X looks

either like this:
„

λ1 0
0 λ2



, λ1, λ2 P F, or like this:
„

λ 0
1 λ



, λ P F.
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In other words, we either have
ϕpx1q “ λ1x1 and ϕpx2q “ λ2x2,

or else,
ϕpx1q “ λx1 ` x2 and ϕpx2q “ λx2.

8.B. Eigenvectors and eigenvalues
Definition 8.4. Let V be a vector space over a field F and let ϕ P LinpV, V q. A subspace W Ď V
is ϕ-invariant if for all x PW , we have ϕpxq PW as well.

If ϕ P LinpV, V q and W Ď V is a ϕ-invariant subspace, then the restriction ϕ|W of ϕ to W can
be thought of as a linear transformation of W . Thus, if we find a ϕ-invariant subspace W , then we
can first analyze the behavior ϕ on W and then hope to deal with the action of ϕ on the rest of V
separately.

Example 8.5. The entire space V itself and the zero space t0u are ϕ-invariant for every linear
transformation ϕ P LinpV, V q.

Example 8.6. Suppose that ϕ P LinpR3,R3q is the R-linear transformation of R3 given by rotation
around the vertical axis by some fixed angle α (see Fig. 5(a)). Then the vertical axis is ϕ-invariant,
and ϕ acts on it as the identity transformation; the horizontal plane is also ϕ-invariant, and ϕ acts
on it as the rotation around the origin by the angle α (see Fig. 5(b)(c)).

0

R3

(a)

0

(b)

0

(c)

Figure 5. Rotation in R3 around the vertical axis.

Of particular interest to us are the simplest nontrivial invariant subspaces, i.e., invariant subspaces
of dimension 1. Let V be a vector space over a field F and let ϕ P LinpV, V q. A nonzero element
x P V is called an eigenvector22 of ϕ if the 1-dimensional subspace Spanptxuq is ϕ-invariant, i.e., if
ϕpxq “ λx for some λ P F . This λ is called the eigenvalue of ϕ corresponding to x. The set of all
eigenvalues of ϕ is called the spectrum of ϕ and is denoted Specpϕq. For λ P Specpϕq, the set

Epλq :“ tx P V : ϕpxq “ λxu

is called the eigenspace of ϕ corresponding to λ. The term “eigenspace” is justified, because
Epλq “ kerpϕ´ λ idV q,

and thus it is indeed a subspace of V . Note that Epλq is the set of all eigenvectors corresponding to
λ, together with the zero vector. By definition, if λ P Specpϕq, then dimEpλq ě 1.

Now suppose that V is a finite-dimensional F -vector space and let n :“ dimV . Suppose that
ϕ P LinpV, V q is a linear transformation of V . What are the eigenvalues of ϕ? By definition, t P F
is an eigenvalue of ϕ if and only if

kerpϕ´ t idV q ‰ t0u,
22Not named after the famous German mathematician Eugen Eigen.
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which in turn is equivalent to
detpϕ´ t idV q “ 0.

(This is where we use that V is finite-dimensional.) To compute the determinant, pick any ordered
basis X for V and let A :“ rϕsX,X be the matrix representing ϕ in this basis. Then

detpϕ´ t idV q “ detpA´ tInq “ det

»

—

—

—

–

Ap1, 1q ´ t Ap1, 2q ¨ ¨ ¨ Ap1, nq
Ap2, 1q Ap2, 2q ´ t ¨ ¨ ¨ Ap2, nq

...
... . . . ...

Apn, 1q Apn, 2q ¨ ¨ ¨ Apn, nq ´ t

fi

ffi

ffi

ffi

fl

After expanding this determinant using the Leibniz formula, we obtain a polynomial in t over F of
degree n. This polynomial is called the characteristic polynomial of the transformation ϕ (or of
the matrix A) and we denote it by Charϕ (or CharA).

Exercise 8.7. Show that rtnsCharϕ “ p´1qn.

Example 8.8. In the 2-by-2 case, the characteristic polynomial of a matrix

A “

„

a11 a12
a21 a22



is
CharAptq “ det

„

a11 ´ t a12
a21 a22 ´ t



“ t2 ´ pa11 ` a22qt` a11a22 ´ a12a21.

From the above discussion, we obtain the following conclusion:

Theorem 8.9. Let V be a finite-dimensional F -vector space and let ϕ P LinpV, V q. Then λ P F is
an eigenvalue of F if and only if λ is a root of Charϕ. �

Corollary 8.10. Let V be a finite-dimensional vector space over an algebraically closed field F and
let ϕ P LinpV, V q. If dimV ě 1, then ϕ has an eigenvalue. �

Example 8.11. Consider the 2-by-2 matrix

A :“
„

0 1
1 0



.

Its characteristic polynomial is CharAptq “ t2 ´ 1, so, viewed as a matrix over R, it has two
eigenvalues: 1 and ´1. On the other hand, the matrix

B :“
„

0 ´1
1 0



has characteristic polynomial CharBptq “ t2 ` 1, so B has no eigenvalues over R. Nevertheless, it
has two eigenvalues over C, namely i and ´i.

Example 8.12. Even over an algebraically closed field, a linear transformation of an infinite-
dimensional space may have no eigenvalues. For example, let F be any field and consider the F -
vector space FN of all infinite sequences px0, x1, . . .q of elements of F . Then the map ϕ P LinpFN, FNq
given by the formula

ϕpx0, x1, x2 . . .q :“ p0, x0, x1, . . .q

has no eigenvalues (exercise!).

Exercise 8.13. Let V be an n-dimensional vector space over a field F and let ϕ P LinpV, V q. Show
that |Specpϕq| ď n.

Exercise 8.14. Let F be a field and let A PMnˆnpF q. Show that CharA “ CharAJ and conclude
that SpecpAq “ SpecpAJq.
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The following (almost trivial) observation is often useful. Suppose that V is a finite-dimensional
vector space over an algebraically closed field F and let ϕ P LinpV, V q. If a subspace W Ď V is
ϕ-invariant, then the restriction ϕ|W is a linear transformation of W , and hence, assuming that
W ‰ t0u, it has an eigenvalue as well as a corresponding eigenvector. But every eigenvector of ϕ|W
is, of course, also an eigenvector of ϕ itself, and thus W contains an eigenvector of ϕ.

8.C. Diagonalizable transformations

There isn’t a question that one can’t immediately answer
about a diagonal matrix.

Kevin O’Meara, John Clark, and Charles Vinsonhaler

Definition 8.15. Let V be a vector space over a field F and let ϕ P LinpV, V q. We say that ϕ is
diagonalizable if V has a basis consisting of eigenvectors of ϕ.

The word “diagonalizable” is explained by the following observation. Suppose that ϕ P LinpV, V q
is a diagonalizable linear transformation of an n-dimensional vector space V and let X “ px1, . . . , xnq
be an ordered basis for V consisting of eigenvectors of ϕ. Then the matrix rϕsX,X looks like this:

rϕsX,X “

»

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

... . . . ...
0 0 ¨ ¨ ¨ λn

fi

ffi

ffi

ffi

fl

,

where λ1, . . . , λn are the eigenvalues of ϕ corresponding to x1, . . . , xn, respectively. A matrix of
this form is called diagonal.

Diagonalizable transformations are particularly easy to understand. Unfortunately, not every
transformation is diagonalizable, even if we are working in a finite-dimensional vector space over an
algebraically closed field.

Example 8.16. Consider the matrix

A :“
„

1 1
0 1



P M2ˆ2pCq.

Its characteristic polynomial is CharAptq “ pt´ 1q2, and thus its only eigenvalue is 1. This means
that if A were diagonalizable, then the would exist a basis forM2ˆ1pCq consisting of two elements x1
and x2 such that Ax1 “ x1 and Ax2 “ x2. But since tx1, x2u is a basis, that would imply Ax “ x
for all x PM2ˆ1pCq, which is absurd.

Nevertheless, over an algebraically closed field, most linear transformations are diagonalizable,
in a certain precise sense (explained below), and so the bulk of the work in classifying linear
transformations up to conjugacy really consists in “taming” the nasty “exceptional” cases.

Lemma 8.17. Let V be an F -vector space and let ϕ P LinpV, V q. Suppose that S Ď V is a set
whose elements are eigenvectors of ϕ corresponding to distinct eigenvalues. Then S is independent.

Proof. Suppose, towards a contradiction, that S is not independent, and let

a1x1 ` ¨ ¨ ¨ ` anxn “ 0

be an equality, where: a1, . . . , an are nonzero elements of F ; x1, . . . , xn are pairwise distinct
elements of S; and n ě 1 is the smallest possible. Note that we must have n ě 2, since an equality
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of the form a1x1 “ 0 is impossible. For each 1 ď i ď n, let λi be the eigenvalue of ϕ corresponding
to xi. By the assumption on S, the elements λ1, . . . , λn are pairwise distinct. Now we write

0 “ pϕ´ λn idV qp0q “ pϕ´ λn idV qpa1x1 ` ¨ ¨ ¨ ` anxnq

“ a1pλ1 ´ λnqx1 ` ¨ ¨ ¨ `((((((((hhhhhhhhanpλn ´ λnqxn .

Let bi :“ aipλi ´ λnq. Then the coefficients b1, . . . , bn´1 are nonzero, while

b1x1 ` ¨ ¨ ¨ ` bn´1xn´1 “ 0,

contradicting the choice of n. �

Exercise 8.18. Lemma 8.17 can be used to give an alternative solution to Exercise 3.43. Consider
the R-vector space RN of all infinite sequences of reals. For each α P R, let

eα :“ p1, α, α2, α3, . . .q.

Let ϕ : RN Ñ RN be the linear map given by

ϕpx0, x1, x2 . . .q :“ px1, x2, x3, . . .q.

Show that for each α P R, the sequence eα is an eigenvector of ϕ with eigenvalue α, and conclude
that the set teα : α P Ru is independent.

Corollary 8.19. Let V be an n-dimensional vector space over a field F and let ϕ P LinpV, V q. If
|Specpϕq| “ n, then ϕ is diagonalizable.

Proof. Suppose the eigenvalues of ϕ are λ1, . . . , λn. For each 1 ď i ď n, pick any eigenvector xi
corresponding to λi. By Lemma 8.17, the set tx1, . . . , xnu is independent. But dimV “ n, so this
set must be a basis. �

In the setting of Corollary 8.19, saying that |Specpϕq| “ n is the same as to say that the polynomial
Charϕ has n distinct roots. Over an algebraically closed field, a “typical” polynomial of degree n
does have n distinct roots—meaning that a “typical” transformation ϕ P LinpV, V q is diagonalizable.
(We will use a precise version of this idea in the next subsection.)

8.D. The Cayley–Hamilton theorem
Let V be an F -vector space and let ϕ P LinpV, V q. If we wish to understand the structure of ϕ,
there are two kinds of things we can try: we could investigate what happens when ϕ is applied
repeatedly, and we could use the vector space structure of V to take linear combinations of ϕ with
other linear transformations. This leads us to the following definitions. For each n P N, let

ϕn :“ ϕ ˝ ϕ ˝ ¨ ¨ ¨ ˝ ϕ
looooooomooooooon

n terms

.

By definition, ϕ0 “ idV , ϕ1 “ ϕ, ϕ2 “ ϕ ˝ ϕ, and so on. Given a polynomial

p “ a0 ` a1t` ¨ ¨ ¨ ` ant
n P F rts,

define
ppϕq :“ a0 idV `a1ϕ` ¨ ¨ ¨ ` anϕ

n P LinpV, V q.
Similarly, for a matrix A PMnˆnpF q, we let

ppAq :“ a0In ` a1A` ¨ ¨ ¨ ` anA
n P MnˆnpF q.

Lemma 8.20. Let V be an F -vector space and let ϕ P LinpV, V q. If p, q P F rts, then

ppϕq ˝ qpϕq “ qpϕq ˝ ppϕq “ ppqqpϕq.
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Proof. It is enough to consider the case when p “ tk and q “ t` (why?). Then
ppϕq “ ϕk, qpϕq “ ϕ`, ppqqpϕq “ ϕk``,

and, of course, ϕk ˝ ϕ` “ ϕ` ˝ ϕk “ ϕk``. �

Exercise 8.21. Let V be an F -vector space and let ϕ P LinpV, V q. Let x P V be an eigenvector
of ϕ with eigenvalue λ. Show that for each polynomial p P F rts, x is an eigenvector of ppϕq with
eigenvalue ppλq. In other words, if ϕpxq “ λ ¨ x, then ppϕqpxq “ ppλq ¨ x.

Lemma 8.22. Let V be a finite-dimensional vector space over a field F and let ϕ P LinpV, V q. Then
there is a nonzero polynomial p P F rts such that ppϕq “ 0.

Proof. We have already seen a very similar argument in the proof of Lemma 4.20. Let n :“ dimV .
Then dim LinpV, V q “ n2, and hence the tuple

pidV , ϕ, ϕ2, . . . , ϕn
2
q

is not independent. Thus, there exist coefficients a0, . . . , an2 P F , not all zero, such that

a0 idV `a1ϕ` ¨ ¨ ¨ ` an2ϕn
2
“ 0.

This means that the polynomial p :“ a0 ` a1t` ¨ ¨ ¨ ` an2tn
2 is as desired. �

The above proof of Lemma 8.22 produces a polynomial p of degree at most n2, where n is the
dimension of V . It turns out that one can find a suitable polynomial of degree n; in fact, the
characteristic polynomial of ϕ does the trick:

Theorem 8.23 (Frobenius, Cayley–Hamilton theorem23). Let V be a finite-dimensional vector
space over a field F and let ϕ P LinpV, V q. Then Charϕpϕq “ 0. Equivalently, if A PMnˆnpF q is an
n-by-n matrix, then CharApAq “ 0.

Remark 8.24. It is tempting to give the following “proof”: “Let A P MnˆnpF q. By definition,
CharAptq “ detpA´ tInq. Hence,

CharApAq “ detpA´AInq “ detpA´Aq “ detp0q “ 0,
as desired.” This is, of course, absurd. For instance, this so-called “argument” shows that CharApAq,
an n-by-n matrix, is equal to 0 P F , a scalar.

Example 8.25. Suppose that A is a 2-by-2 matrix and write

A “

„

a11 a12
a21 a22



.

Then CharAptq “ t2 ´ pa11 ` a22qt` a11a22 ´ a12a21, and thus
CharApAq “ A2 ´ pa11 ` a22qA` pa11a22 ´ a12a21qI2

“

„

a2
11 ` a12a21 a11a12 ` a12a22

a11a21 ` a21a22 a12a21 ` a
2
22



´

„

a2
11 ` a11a22 a11a12 ` a12a22

a11a21 ` a21a22 a11a22 ` a
2
22



`

„

a11a22 ´ a12a21 0
0 a11a22 ´ a12a21



“

„

0 0
0 0



,

as claimed. Notice that, regardless of the size of the matrix A, the entries of CharApAq are going
to be polynomials in the entries of A with integer coefficients, and the Cayley–Hamilton theorem
asserts that all these polynomials are zero. This observation plays a crucial role in the proof of the
Cayley–Hamilton theorem given below.

23The first complete proof of this theorem was given by Ferdinand Georg Frobenius in 1878. However, it is usually
called the Cayley–Hamilton theorem, after Arthur Cayley and William Rowan Hamilton, who considered some of its
special cases in the 1850s.
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Proof. We proceed in three steps.
First, assume that ϕ is diagonalizable. Let tx1, . . . , xnu be a basis for V consisting of eigenvectors

of ϕ and for each 1 ď i ď n, let λi be the eigenvalue of ϕ corresponding to xi. By Exercise 8.21,

Charϕpϕqpxiq “ Charϕpλiq ¨ xi “ 0 ¨ xi “ 0,

where we use the fact that eigenvalues of ϕ are roots of the characteristic polynomial Charϕ. Since
Charϕpϕqpxiq “ 0 for every basis vector xi, Charϕpϕq must be the zero function.

Second, we shall consider arbitrary ϕ but assume that F is an algebraically closed field of
characteristic 0, for example, the field C of complex numbers. It will be more convenient to work
with matrices rather than with linear transformations. Let A be an n-by-n matrix and write

A “

»

—

–

a11 ¨ ¨ ¨ a1n
... . . . ...
an1 ¨ ¨ ¨ ann

.

fi

ffi

fl

(8.26)

We already know that CharApAq “ 0 if A is diagonalizable. On the other hand, if A is not
diagonalizable, then, by Corollary 8.19, A has fewer than n eigenvalues, which, since F is algebraically
closed, means that the polynomial CharA has a multiple root. Since deg CharA “ n and charpF q “ 0,
Char1A is a nonzero polynomial of degree n´ 1, and hence, by Corollary 7.42, CharA has a multiple
root if and only if respCharA,Char1Aq “ 0. To summarize, every n-by-n matrix A over F has at least
one of the following properties:

CharApAq “ 0 or respCharA,Char1Aq “ 0. (8.27)

Take any 1 ď i, j ď n. As observed in Example 8.25, the pi, jq-th entry of the matrix CharApAq
is a polynomial in the n2 variables a11, . . . , ann with integer coefficients; denote this polynomial by
pijpa11, . . . , annq. Similarly, the expression respCharA,Char1Aq is also a polynomial in a11, . . . , ann
with integer coefficients, which we denote by qpa11, . . . , annq. For example, if n “ 2, then

qpa11, a12, a21, a22q “ respt2 ´ pa11 ` a22qt` a11a22 ´ a12a21, 2t´ a11 ´ a22q

“ det

»

–

a11a22 ´ a12a21 ´a11 ´ a22 0
´a11 ´ a22 2 ´a11 ´ a22

1 0 2

fi

fl

“ ´a2
11 ` 2a11a22 ´ 4a12a21 ´ a

2
22.

From (8.27), we know that

pijpa11, . . . , annq “ 0 or qpa11, . . . , annq “ 0 for all a11, . . . , ann P F.

Sine F is infinite, Corollary 7.48 implies that we have pij “ 0 or q “ 0 as polynomials. Since q ‰ 0
(because there exist matrices with n distinct eigenvalues), we conclude that pij “ 0. But then
pijpa11, . . . , annq “ 0 for all a11, . . . , ann P F , regardless of whether the matrix A is diagonalizable.
Since this is true for all i, j, we conclude that CharApAq “ 0 for all A PMnˆnpF q.

Third, we consider the general case. The above argument carried out over any algebraically closed
field of characteristic 0, e.g., over C, shows that the integer polynomial pij representing the pi, jq-th
entry of CharApAq for A as in (8.26) is, in fact, the zero polynomial. But then pijpa11, . . . , annq “ 0
for all a11, . . . , ann P F regardless of the choice of the field F . Thus, CharApAq “ 0 for all n-by-n
matrices A over any field F , as desired.24 �

24In fact, this argument shows that the Cayley–Hamilton theorem holds not only over every field, but over every
commutative ring as well.
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8.E. Generalized eigenspaces
Definition 8.28. Let V be a finite-dimensional vector space over a field F and let ϕ P LinpV, V q.
Let λ P Specpϕq and suppose that the multiplicity of λ as a root of Charϕ is m. Define

Gpλq :“ kerppϕ´ λ idV qmq.
We call Gpλq the generalized eigenspace of ϕ corresponding to the eigenvalue λ.
Exercise 8.29. Let V be a finite-dimensional F -vector space and let ϕ P LinpV, V q. Show that for
each λ P Specpϕq, we have Epλq Ď Gpλq.
Exercise 8.30. Let V be a finite-dimensional F -vector space and let ϕ P LinpV, V q. Show that for
each λ P Specpϕq, the space Gpλq is ϕ-invariant.
Theorem 8.31 (General ized eigenspace decomposit ion). Let V be a finite-dimensional
vector space over an algebraically closed field F and let ϕ P LinpV, V q. Let λ1, . . . , λk be the distinct
eigenvalues of ϕ and let G1, . . . , Gk be the corresponding generalized eigenspaces. Then every
vector x P V can be expressed uniquely as x “ x1 ` ¨ ¨ ¨ ` xk, where x1 P G1, . . . , xk P Gk.
Proof. Let n :“ dimV . For brevity, let p :“ Charϕ. For each 1 ď i ď k, let mi be the multiplicity
of λi as a root of p and define

pi :“ pt´ λiqmi .

Thus, we can write
p “ p´1qnpt´ λ1q

m1 ¨ ¨ ¨ pt´ λkq
mk “ p´1qnp1 ¨ ¨ ¨ pk.

Also, let qi :“ p{pi; in other words,
qi “ p´1qnp1 ¨ ¨ ¨ pi´1pi`1 ¨ ¨ ¨ pk.

Note that, by definition, Gi “ kerppipϕqq.
Claim. For each 1 ď i ď k, impqipϕqq Ď Gi.
Proof. Take any y P V . We need to show that qipϕqpyq P Gi, i.e., pipϕqqipϕqpyq “ 0. But piqi “ p,
and ppϕq “ 0 by the Cayley–Hamilton theorem, so pipϕqqipϕqpyq “ ppϕqpyq “ 0, as claimed. %

Since λ1, . . . , λk are pairwise distinct, we have gcdpq1, . . . , qkq “ 1. Therefore, by Exercise 7.19,
there exist polynomials u1, . . . , uk P F rts such that q1u1` ¨ ¨ ¨` qkuk “ 1. Take any x P V . We have

x “ idV pxq “ pq1u1 ` ¨ ¨ ¨ ` qkukqpϕqpxq “ q1pϕqu1pϕqpxq
looooooomooooooon

P impq1pϕqqĎG1

` ¨ ¨ ¨ ` qkpϕqukpϕqpxq
looooooomooooooon

P impqkpϕqqĎGk

,

as desired. It remains to prove uniqueness. To that end, it is enough to show that if x1`¨ ¨ ¨`xk “ 0
and x1 P G1, . . . , xk P Gk, then x1 “ ¨ ¨ ¨ “ xk “ 0 (why?). Consider any 1 ď i ď k. Since xi P Gi,
we have pipϕqpxiq “ 0. On the other hand, for each j ‰ i, the polynomial pj divides qi, and hence
qipϕqpxjq “ 0. Since gcdppi, qiq “ 1, there are polynomials u, v P F rts such that upi` vqi “ 1. Then

xi “ idV pxiq “ pupi ` vqiqpϕqpxiq “ (((((((hhhhhhhupϕqpipϕqpxiq ` vpϕqqipϕqpxiq

“ vpϕqqipϕqpxiq

rsince qipϕqpxjq “ 0 for j ‰ is “ vpϕqqipϕqpx1 ` ¨ ¨ ¨ ` xkq “ 0,
and we are done. �

Exercise 8.32. In the setting of Theorem 8.31, let mi be the multiplicity of λi as a root of Charϕ.
Show that dimGi “ mi. Hint: What is the characteristic polynomial of ϕ|Gi?
Exercise 8.33. Let V be a finite-dimensional vector space over an algebraically closed field F and
let ϕ P LinpV, V q. Show that for each λ P Specpϕq, we have

Gpλq “ tx P V : pϕ´ λ idV qmpxq “ 0 for some m P Nu.
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Suppose that we are in the setting of Theorem 8.31; i.e., let ϕ P LinpV, V q be a linear transformation
of a finite-dimensional vector space V over an algebraically closed field F , let λ1, . . . , λk be the
distinct eigenvalues of ϕ, and let G1, . . . , Gk be the corresponding generalized eigenspaces. For
each 1 ď i ď k, let mi be the multiplicity of λi as a root of Charϕ (by Exercise 8.32, mi “ dimGi).
Set ϕi :“ ϕ|Gi , so ϕi is a linear transformation of Gi. Thanks to Theorem 8.31, to understand the
structure of ϕ, we just need to understand the transformations ϕ1, . . . , ϕk individually. Indeed, if
we know ϕ1, . . . , ϕk, then, for each x P V , the value ϕpxq is determined uniquely as follows: If we
write x “ x1 ` ¨ ¨ ¨ ` xk with x1 P G1, . . . , xk P Gk, then ϕpxq “ ϕ1px1q ` ¨ ¨ ¨ ` ϕkpxkq.

Another way to phrase this is in terms of matrices. For each 1 ď i ď k, pick an arbitrary ordered
basis Xi for Gi. Set X :“ X1

a ¨ ¨ ¨aXk, where a indicates concatenation of finite tuples.25 Then,
according to Theorem 8.31, X is an ordered basis for V . If we set Ai :“ rϕisXi,Xi to be the matrix
representing ϕi with respect to the basis Xi, then the matrix A :“ rϕsX,X representing ϕ in the
basis X has the following “block-diagonal” form:

A “

»

—

—

—

–

A1
A2

. . .
Ak

fi

ffi

ffi

ffi

fl

(the entries outside of the diagonal “blocks” are zero).

Thus, if we manage to choose the bases X1, . . . , Xk so that the corresponding matrices A1, . . . , Ak
have a particularly “simple” structure, then we would obtain a “simple” matrix A representing the
transformation ϕ.

It remains to investigate the structure of the transformations ϕi, 1 ď i ď k. It is actually more
natural to look at the transformation ψi :“ ϕi´λi id instead. Of course, if we know ψi, then we know
ϕi as well, since for all x P Gi, ϕipxq “ ψipxq ` λix. By the definition of Gi, the transformation ψi
has the property that ψmi

i “ 0. Such transformations are called nilpotent, and in the next subsection
we shall see that their behavior can be analyzed very precisely.

8.F. Structure of nilpotent transformations
Definition 8.34. Let V be a vector space over a field F . A linear transformation ϕ P LinpV, V q is
called nilpotent is ϕm “ 0 for some m P N. The least such m is called the nilpotency degree of ϕ
and is denoted by ndegpϕq.

Let V be a finite-dimensional F -vector space and let ϕ P LinpV, V q be nilpotent. The structure
of ϕ can be understood particularly well using a special type of basis for V , called a chain basis. A
chain basis for ϕ is a basis X Ď V for V such that:

‚ for all x P X, either ϕpxq P X or ϕpxq “ 0; and
‚ for each x P X, there is at most one element y P X with ϕpyq “ x.

The name “chain basis” is motivated by the following considerations. Let X be a chain basis for ϕ.
If we represent each element of X by a dot and put an arrow pointing from the dot corresponding
to each element x P X to the dot corresponding to ϕpxq (whenever ϕpxq ‰ 0), then the resulting
directed graph will look like a collection of disjoint “chains”:

25The concatenation of two sequences X “ px1, . . . , xsq and Y “ py1, . . . , ytq is the sequence

XaY :“ px1, . . . , xs, y1, . . . , ytq.
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x1 x2 x3 x4

x5 x6 x7

x8 x9 x10

x11 x12

x13

x14

Figure 6. A chain basis represented by a directed graph (the rightmost elements
are mapped to 0 by ϕ).

Indeed, since ϕ is nilpotent, if we follow the arrows starting from any dot, we must eventually reach
a “dead end” (corresponding to an element of X that is sent to 0 by ϕ). On the other hand, starting
from any of the “dead ends,” we can follow the arrows backwards and build the corresponding
“chain” (when we try to follow the arrows backwards, there are no “forks in the road,” because for
each x P X, there is at most one arrow pointing to x).

If X is a chain basis for ϕ, then the elements of X can be put in a sequence px1, . . . , xnq so that
for each 1 ď i ď n, we have either ϕpxiq “ xi`1 or ϕpxiq “ 0 (see Fig. 6). With respect to such an
ordered chain basis, the matrix A that represents ϕ is “block-diagonal,” where the blocks B1, . . . ,
Bk correspond to the “chains,” and each individual block Bi looks like this:

Bi “

»

—

—

—

—

—

–

0
1 0

1 0
. . . . . .

1 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

i.e., the only nonzero entries of Bi are located immediately below the main diagonal and are all
equal to 1.26

Theorem 8.35. Let V be a finite-dimensional vector space over a field F and let ϕ P LinpV, V q be
nilpotent. Then there is a chain basis X Ď V for ϕ.

Proof. Before proceeding with the proof, we need some terminology. Let W Ď V be a subspace.
A tuple px1, . . . , xkq P V

k is independent over W if for all a1, . . . , ak P F , we have

a1x1 ` ¨ ¨ ¨ ` akxk PW ðñ a1 “ ¨ ¨ ¨ “ ak “ 0.

A tuple X “ px1, . . . , xkq is a basis over W is it is independent over W and

Spanptx1, . . . , xku YW q “ V.

Thus, “independent” means the same as “independent over t0u” and a basis is the same as a basis
over t0u. Notice that a tuple X is a basis over W if and only if for every ordered basis Y for W ,
the concatenation XaY is an ordered basis for V .

Exercise 8.36. Show that every tuple X “ px1, . . . , xkq that is independent over a subspaceW Ď V
can be extended to a basis over W .

26It is common to order the elements of a chain basis differently, resulting in blocks with 1s immediately above
the main diagonal. The ordering used here seems more natural to me personally; of course, there is no substantial
difference between the two conventions.
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To establish Theorem 8.35, we shall prove the following stronger claim using induction on dimV :

Let m :“ ndegpϕq and suppose that X “ px1, . . . , xkq P V
k is a tuple independent over kerpϕm´1q.

Then X can be extended to a chain basis for ϕ.

The base case dimV “ 0 is trivial, so assume that dimV ě 1. In this case idV ‰ 0, and hence
m ě 1. Saying that m is the nilpotency degree of ϕ means that kerpϕmq “ V and kerpϕm´1q Ĺ V .
The restriction of ϕ to kerpϕm´1q is a nilpotent transformation of kerpϕm´1q of nilpotency degree
m´ 1. Our plan is to apply the inductive hypothesis to this transformation.

To begin with, we use Exercise 8.36 to extend X to a basis X 1 over kerpϕm´1q. Since any chain
basis that extends X 1 also extends X, we will, without loss of generality, assume that X “ X 1.

Claim. The tuple Y :“ pϕpx1q, . . . , ϕpxkqq is independent over kerpϕm´2q.

Proof. Take any a1, . . . , ak P F such that

a1ϕpx1q ` ¨ ¨ ¨ ` akϕpxkq P kerpϕm´2q.

Since
a1ϕpx1q ` ¨ ¨ ¨ ` akϕpxkq “ ϕ pa1x1 ` ¨ ¨ ¨ ` akxkq ,

we conclude that
a1x1 ` ¨ ¨ ¨ ` akxk P kerpϕm´1q.

But the tuple X is independent over kerpϕm´1q, and hence a1 “ ¨ ¨ ¨ “ ak “ 0, as desired. %

Since kerpϕmq “ V , we have impϕq Ď kerpϕm´1q. Thus, the elements of Y belong to kerpϕm´1q,
and we may apply the inductive hypothesis with kerpϕm´1q in place of V , ϕ|kerpϕm´1q in place of ϕ,
and Y in place of X. This shows that we can extend Y to a chain basis Z for the restriction of ϕ to
kerpϕm´1q. We now claim that XaZ is a desired chain basis for ϕ.

Claim. The tuple XaZ is independent.

Proof. Write Z “ pz1, . . . , z`q and suppose that

a1x1 ` ¨ ¨ ¨ ` akxk ` b1z1 ` ¨ ¨ ¨ ` b`z` “ 0.

Then
a1x1 ` ¨ ¨ ¨ ` akxk “ ´b1z1 ´ ¨ ¨ ¨ ´ b`z` P kerpϕm´1q.

Since X is independent over kerpϕm´1q, we conclude that a1 “ ¨ ¨ ¨ “ ak “ 0. But then

b1z1 ` ¨ ¨ ¨ ` b`z` “ 0,

and since Z is independent, b1 “ ¨ ¨ ¨ “ b` “ 0 as well. %

Since Z is a basis for kerpϕm´1q, while X is a basis over kerpϕm´1q, the tuple XaZ is spanning.
Hence, XaZ is a basis. It remains to verify that it is a chain basis, which is left as an exercise. �

8.G. The Jordan normal form
Now it’s time to put the results of this section together. Let V be a finite-dimensional vector space
over an algebraically closed field F and let ϕ P LinpV, V q. Let λ1, . . . , λk be the distinct eigenvalues
of ϕ and let G1, . . . , Gk be the corresponding generalized eigenspaces. For each 1 ď i ď k, set
ϕi :“ ϕ|Gi and ψi :“ ϕi ´ λi id. By construction, ψi is a nilpotent transformation of Gi. Hence, by
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Z

Figure 7. A cartoon of the proof of Theorem 8.35.

Theorem 8.35, we can find a chain basis Xi for ψi. We can view Xi as an ordered basis such that
the matrix rψisXi,Xi is “block-diagonal,” with blocks of the form

»

—

—

—

—

—

–

0
1 0

1 0
. . . . . .

1 0

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Since ϕi “ ψi ` λi id, the matrix Ai :“ rϕisXi,Xi is also “block-diagonal,” with blocks of the form
»

—

—

—

—

—

–

λi
1 λi

1 λi
. . . . . .

1 λi

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Let X :“ X1
a ¨ ¨ ¨aXk. From Theorem 8.31, we know that the matrix A :“ rϕsX,X is simply the

“block-diagonal” matrix assembled from A1, . . . , Ak. Combining all of this information, we conclude
that the matrix A is “block-diagonal,” with blocks of the form

»

—

—

—

—

—

–

λ
1 λ

1 λ
. . . . . .

1 λ

fi

ffi

ffi

ffi

ffi

ffi

fl

, (8.37)

where λ P Specpϕq. Such a matrix is called a Jordan normal form of ϕ. Thus, we have established
the following fundamental result:

Theorem 8.38 (Jordan). Let V be a finite-dimensional vector space over an algebraically closed
field F and let ϕ P LinpV, V q. Then ϕ has a Jordan normal form; i.e., there is a basis X for V such
that rϕsX,X is a “block-diagonal” matrix with blocks of the form (8.37), where λ P Specpϕq. �

Exercise 8.39. Let V be a finite-dimensional vector space over an algebraically closed field F and
let ϕ P LinpV, V q. Show that the Jordan normal form of ϕ is unique up to reordering of the blocks.
Hint: Analyze our proof of Theorem 8.38.

Theorem 8.38, combined with the result of Exercise 8.39, gives a very satisfying answer to the
classification problem: Two linear transformations ϕ, ψ P LinpV, V q of a finite-dimensional vector
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space over an algebraically closed field are conjugate if and only if their Jordan normal forms are
the same up to reordering of the blocks.

Example 8.40. Let F be an algebraically closed field and suppose that V is a 2-dimensional
F -vector space. What can the Jordan normal form of a transformation ϕ P LinpV, V q look like? It
must be “block-diagonal,” so there are two possibilities:

‚ one block of size 2; or
‚ two blocks of size 1.

In the first case, the matrix has the form
„

λ 0
1 λ



,

where λ is the unique eigenvalue of ϕ. In the second case, the matrix is
„

λ1 0
0 λ2



,

and Specpϕq “ tλ1, λ2u (it is still possible that λ1 “ λ2). When dimV “ 3, there are three options:
»

–

λ 0 0
1 λ 0
0 1 λ

fi

fl ,

»

–

λ1 0 0
1 λ1 0
0 0 λ2

fi

fl , and

»

–

λ1 0 0
0 λ2 0
0 0 λ3

fi

fl .

Extra exercises for Section 8
Exercise 8.41. Let F be a field and let V be an F -vector space. Let ϕ, ψ : V Ñ V be linear
functions. Suppose that ϕ and ψ commute, i.e., that ϕ ˝ψ “ ψ ˝ϕ. Let λ P Specpϕq and let W Ď V
be the corresponding eigenspace.

(a) Show that the space W is ψ-invariant.
(b) Conclude that if the field F is algebraically closed and the space V is finite-dimensional,

then W contains an eigenvector of ψ; in particular, ϕ and ψ have a common eigenvector.

Exercise 8.42. In this exercise we prove the following result of Sylvester:

Theorem 8.43 (Sylvester). Let F be an algebraically closed field and let A P MnˆnpF q, B P

MmˆmpF q. If A and B have no common eigenvalues, then for each C PMnˆmpF q, the equation
AX ´XB “ C

has a unique solution X PMnˆmpF q.

Let V :“MnˆmpF q and define linear functions ϕA, ϕB : V Ñ V by
ϕApXq :“ AX and ϕBpXq :“ XB.

(a) Show that the functions ϕA and ϕB commute with each other.
(b) Let λ P SpecpϕA ´ ϕBq. Show that λ “ µ ´ ν for some µ P SpecpϕAq and ν P SpecpϕBq.

Hint: Apply the result of Exercise 8.41 with ϕA ´ ϕB in place of ϕ and ϕA in place of ψ.
(c) Show that SpecpϕAq “ SpecpAq and SpecpϕBq “ SpecpBq. Hint: To show that SpecpϕBq “

SpecpBq, use the fact that SpecpBq “ SpecpBJq (see Exercise 8.14).
(d) Conclude that all eigenvalues of ϕA ´ ϕB are nonzero and finish the proof of Theorem 8.43.

Exercise 8.44. Let F be an algebraically closed field and let A PMnˆnpF q. Use Theorem 8.38 to
show that the matrices A and AJ are conjugate.
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