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1. FIELDS
1.A. A problem to think about
Linear algebra, by and large, is concerned with systems of linear equations of the form
a1r1 + -+ apxy, = b.

Ponder the following two questions:

(Ql) Where do the coefficients ay, ..., a,, b and the variables z1, ..., z, come from?
(Q2) How many equations and variables can such a system include? Can there be infinitely many?

Most introductory linear algebra courses answer (Q1) by requiring the coefficients and the variables
to be real numbers, and (Q2) by prohibiting infinite systems. However, it turns out that a lot of
linear-algebraic techniques can be used in a much broader context, as we will soon discover.

The following problem gives an example of a situation when there are infinitely many variables
and equations:

Problem 1.1. Let aq, ..., a, be distinct integers and suppose that f: Z — R is a function such
that for all k € Z and ¢ € Z*, we have
f(k+al) + f(k+a2l) + -+ f(k+anl) = 0. (1.2)

Must it be that f(m) = 0 for all m € Z?

We can think of the values f(m), m € Z, as real variables indexed by the integers. Then (1.2) is
a homogeneous linear equation in these variables, and what Problem 1.1 is asking is whether the
infinite system formed by these equations has a nontrivial solution. Here is how one can go about
answering this question for a specific choice of a1, ..., ay,:

Example 1.3. Suppose that n =3 and a; =0, ag = 1, a3 = 2. Then f(m) =0 for all m € Z, as
the following calculation shows:

Fm) = - (fm) + Fm + 1)+ F(m +2)) = - (Fm+ 1) + fm +2) + fm +3))
k=m, =1 k=m+1, £=1
+ é'gf(m+3)—|—f(m+4)+f(m+5)2 —é-gf(m+4)—|—f(m+5)+f(m+6)2
k=m+43, (=1 k=m+4, £=1
+ 5 (fm) + fm +3) + f(m +6)
k:Tr?jZ:3
—0. (1.4)

In principle, we might hope to combine different instances of (1.2) in a manner similar to (1.4) to
obtain the equality f(m) = 0. However, doing this explicitly for arbitrary aq, ..., a, is tricky. We
will eventually be able to sidestep this difficulty and solve Problem 1.1 almost effortlessly. To really
appreciate the power of the general theory that we will develop, the reader is encouraged to try
their hand on some concrete instances of Problem 1.1, such as the following;:

Exercise 1.5. Solve Problem 1.1 forn =3 and a1 =0, as = 1, ag = 3.

1.B. Groups, rings, fields
For now we will focus on question (Q1). It is clear that for a linear equation
a1r1 + -+ apry, = b

to make sense, there has to be a way to multiply and add entities such as the a;’s and the x;’s. For
instance, the a;’s and the z;’s might be real numbers. But they could also be complex numbers, or
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rational numbers, or even integers. (The problem of finding integer solutions to linear equations
is part of the subject called integer programming, which has numerous applications in computer
science.) It turns out that linear algebra works best when the coefficients and the variables are
elements of an algebraic structure called a field.

To define fields, we will need a brief recap of some basic notions from abstract algebra. The reader
should be warned: The rest of this subsection is a tiresome journey through a sea of boring-sounding
terms and technical definitions, but, trust me, this evil is a necessary one, and soon enough we will
reap the bountiful fruits of our labors.

A binary operation on a set S is a map

xS xS — 8.

In other words, * takes an (ordered) pair of elements of S as an input and outputs a single element
of S. It is customary to write a * b instead of *(a, b) (for instance, we write a + b instead of +(a, b)).
A binary operation  is associative if for all a, b, ¢ € S, we have

(axb)*xc=ax(bxc).

Associativity of * means that it makes sense to write a x b » ¢, since the placement of parentheses,
doesn’t affect the outcome. This observation generalizes to more than three elements:

Exercise 1.6. Show that if * is an associative binary operation on a set S, then for all ay, ...,
an € S, the value a; x ag * - - - x a,, is well-defined and independent of the placement of parentheses.

A binary operation * on a set S is commutative if for all a, b € .S, we have
a*xb=>bxa.
An element e € S is an identity of * if for all a € S,
axe=exa=a.
Lemma 1.7. If * is a binary operation with identity, then the identity of x is unique.
PROOF. If ¢, € are identities of *, then
e=exe =¢. u

Let » be a binary operation on a set S and let e be an identity of x. An inverse of ¢ € S is an
element b € S such that
axb=bxa=ce.
One might hope that, by analogy with Lemma 1.7, every element a € S can have at most one inverse.
Unfortunately, this hope is false in general:

Exercise 1.8. Give an example of a binary operation * with identity for which there is an element
with more than one inverse.

Nevertheless, if = is associative, then inverses are unique:

Lemma 1.9. If x is an associative binary operation with identity e, then every element has at most
one inverse with respect to .

PROOF. Suppose that b and b’ are both inverses of a. Then
b=brxe=bx(axb)=(bxa)xt =ext =V. [ |

The next definition identifies what can perhaps be called the most important class of algebraic
structures:

Definition 1.10. A group is a set GG equipped with an associative binary operation * such that *
has an identity e and every element g € G has an inverse.
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A group (G, *) is called commutative, or Abelian, if the operation * is commutative.

Example 1.11. (R, +) is an Abelian group. The identity of this group is 0, and the inverse of an
element a € R is (—a).

Example 1.12. (R,-) is not a group. The multiplication operation is associative and commutative;
it also has an identity, namely the number 1. But the element 0 has no inverse.

Exercise 1.13. Is (R\{0}, ) an Abelian group?

Now we define a class of structures with two operations that resemble the usual addition and
multiplication:

Definition 1.14. A ring is a set R equipped with a pair of binary operations + and -, called
addition and multiplication respectively, such that:

(R1) (R, +) is an Abelian group, whose identity is denoted 0;
(R2) multiplication is an associative operation with identity, which is denoted 1;
(R3) for all a, b, c € R, we have

a-(b+c)=(a-b)+(a-c) and (a+b)-c=(a-c)+ (b-c).

A ring (R, +,-) is called commutative if - is a commutative operation.!

Example 1.15. (R, +,:) and (Z, +,-) (where + and - are the usual addition and multiplication)
are commutative rings.

Example 1.16. Let M, «,(R) denote the set of all n-by-n matrices with real entries. Then My, (R)
is a ring under the usual operations of matrix addition and multiplication, but when n > 2, this
ring is not commutative. For instance, for n = 2, we have

[1 0]_[1 1]:[1 1}7&[2 1]:[1 1]_[1 0]
1 1 0 1 1 2 11 0 1 1 1
Exercise 1.17 (important). Show that in any ring R, the following identities hold for all a, b € R:
a-0=0-a=0;
a-(=b)=(—a)-b=—(a-b).
Finally, we can define fields, which are particularly nice rings:

Definition 1.18. A field is a commutative ring F' in which 0 # 1 and every element a € F\{0} has
a multiplicative inverse.

Exercise 1.19. Why is it necessary to require 0 # 1 in the definition of a field?

1.C. Examples of fields

Example 1.20. R, C, and Q, equipped with the usual addition and multiplication operations, are
fields. On the other hand, Z is a commutative ring but not a field, since some elements (actually,
all nonzero elements apart from 1 and —1) have no multiplicative inverses. The set of nonnegative
integers N is not even a ring, since most elements of N have no additive inverses.

Example 1.21. Consider the set
Qi) ={a+bi:abeQ}cC.

We claim that Q(¢) is a field under the usual addition and multiplication operations; in other words,
Q(1) is a subfield of C. First, we have to show that Q(7) is closed under addition and multiplication;

1Because + is commutative by definition.
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ie., if z, y € Q(i), then x + y, zy € Q(i) as well. For addition, this is almost trivial (exercise!), while
for multiplication, we have

(a + bi)(c+ di) = (ac — bd) + (ad + bc)i,

and if a, b, ¢, and d are rational, then so are (ac — bd) and (ad + be). Now it is fairly easy to see
that Q() is a ring (another exercise!), so it remains to verify that every nonzero element of Q(7)
has a multiplicative inverse in Q(¢). But
1 a__ b
= i
a+bi  a?+0b>  a?+b?7
and if a, b € Q, then a/(a® + b?), —b/(a® + b?) € Q as well.

Exercise 1.22. Let n be a positive integer and define

Q(vn) ={a+by/n :a, beQ} cR.
Prove that Q(4/n) is a subfield of R.

Example 1.23. A complex number a € C is algebraic if there is a nonzero polynomial p(z) with
rational coefficients such that p(a) = 0. Some examples of algebraic numbers are:

rational numbers (if a € Q, then it is a root of the polynomial x — a with rational coefficients);
+/2, which is a root of 2?2 — 2;

the imaginary unit i, which is a root of 22 + 1;

/5, which is a root of 23 — 5;

the golden ratio (1 + +/5)/2, which is a root of 2% — z — 1;

the five complex roots of x° — 4a + 2;

&te.

Exercise 1.24. Show that every element of Q() is algebraic. (See Example 1.21 for the definition
of Q(i).) Show that if n is a positive integer, then every element of Q(4/n) is algebraic. (See
Exercise 1.22 for the definition of Q(y/n).)

Some numbers that are not algebraic are 7 = 3.1415... and e = 2.7182.. ..2 Denote the set of all
algebraic numbers by Q. Then Q is a subset of C. It turns out that Q is a field:

Theorem 1.25. Q is a subfield of C.

Note that this theorem is far from obvious, because it is not clear from the definition that Q is
closed under addition and multiplication:

Exercise 1.26 (hard). Suppose that a is a root of 2% — 4z + 2 and b is a root of 22° — 5z + 5.
Find a nonzero polynomial p(x) with rational coefficients such that p(a + b) = 0.

We will prove Theorem 1.25 later on, when we have enough machinery to attack it efficiently.

1.D. Finite fields

By definition, every field must contain at least two distinct elements, namely 0 and 1. It turns out,
there is a field with only two elements. Namely, let Fy := {0, 1} and define + and - on Fy as follows:

— O+
— Ol

0 1 -0
01 010
10 110

2The fact that e is not algebraic was first established by Charles Hermite in 1873, while the non-algebraicity of m
was proved in 1882 by Ferdinand von Lindemann.
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It is not hard to check that these two operations turn Fy into a field.

More generally, let n be an integer > 2. Let Z,, be the set {0, 1,...,n— 1}, equipped with addition
and multiplication modulo n. In other words, to add/multiply two elements a, b € Z,, we first
add/multiply them as integers and then compute the remainder of the result after division by n.
For instance, 2 + 2 = 1 in Zg, because, if we add 2 and 2 as integers, we get 4, and the remainder of
4 after division by 3 is 1. We usually write 2+ 2 = 1 (mod 3) to emphasize that the operation is
performed in Zg instead of Z.

Exercise 1.27 (tedious but straightforward). Show that Z,, is a commutative ring.
Theorem 1.28. Let n be an integer > 2. Z,, is a field if and only if n is a prime number.

ProOOF. First, suppose that n is not prime. To show that Z,, is not a field, we will use the following
lemma:

Lemma 1.29. If F' is a field and a, b are nonzero elements of F', then ab # 0.

Proof. Assume, towards a contradiction, that a, b are nonzero elements such that ab = 0. Since
a # 0 and F is a field, a has a multiplicative inverse a~'. Then

b=1-b=(ata)b=0at(ab) =a'-0=0,
where the last equality is due to Exercise 1.17. -

If n is not a prime number, then n = k¢ for some integers 2 < k, £ < n. Then k, £ are nonzero in
Zn, yet k¢ =n =0 (mod n). In other words, Z,, contradicts Lemma 1.29, and thus it is not a field.

Now suppose that n is a prime number. Since we already know that Z,, is a commutative ring,
and it is clear that 0 # 1 (mod n), we only need to show that every nonzero element of Z,, has a
multiplicative inverse. To that end, take any a € Z,\{0}. We need to find some b € Z,, such that
ab =1 (mod n). Consider the following function:

fa: 2y — Zy: b — ab.

We claim that f, is injective, i.e., if f,(b1) = fu(b2), then by = by. Indeed, f,(b1) = fo(b2) means
that ab; = aby in Z,,, i.e., a(by —be) is divisible by n. Since n is a prime number and a # 0 (mod n),
it must be that (b — bg) is divisible by n. In other words, by — by = 0 (mod n), or, equivalently,
by = by (mod n), as claimed. The set Z,, is finite, so if the map f,: Z,, — Z,, is injective, then it
must also be surjective, i.e., for every c € Z,, there is some b € Z,, such that f,(b) = c¢. Taking ¢ = 1,
we obtain b € Z,, such that ab = f,(b) = ¢ = 1, as desired. Therefore, every nonzero element of Z,
has a multiplicative inverse, and so Z,, is indeed a field. |

Remark. There are other ways to show that Z, is a field when n is prime. A very general approach
involves the so-called Euclidean algorithm. We will discuss it later on in the context of polynomial
division.

For a prime number p, we write I, instead of Z,, to emphasize that it is a field. (Another common
notation for this field is GF(p), standing for “the Galois field of order p.”)

Exercise 1.30. Suppose that p is a prime number and F' is a finite field of size p. Show that F'is
isomorphic to [Fy,.

There exist other finite fields. In fact, the following is true:

Theorem 1.31. Let n be an integer > 2. There exists a finite field of size n if and only if n is a
power of a prime number, in which case all the fields of size n are isomorphic to each other.

If ¢ is a prime power, then the unique (up to isomorphism) field of size ¢ is denoted F, (or GF(q)).
Note that unless ¢ is itself prime, [, is not the same as Z,;. We will not prove Theorem 1.31 in these
notes.



8 LINEAR ALGEBRA

1.E. Matrices over rings

Matrices are very important objects in linear algebra. Let R be a ring (not necessarily commutative).
An m-by-n matrix over R is a rectangular array of elements of R indexed by the pairs (i, j) with
1 <i<m,1<j<n. Fora matrix A, we write A(i, ) for the entry of A in the position (i, j).>*
Thus, a typical m-by-n matrix A looks like this:

A1) A(L2) -+ A(Ln)
| A1) A2 - AR
A1) A(m.2) -+ A(m,n)

The set of all m-by-n matrices over R is denoted by M,,x,(R). For a pair of matrices A, B €
My xn(R), their sum A + B € M,,«,(R) is the matrix given by

(A+ B)(i,7) == A(i,j) + B(i,7) (1.32)

for all 1 <i < m,1<j<m. Note that “+” on the right-hand side of (1.32) indicates the addition
operation in the ring R.

Exercise 1.33. Show that (M, xn(R), +) is an Abelian group.

To define matrix multiplication, we first need a convenient piece of notation. Let I be a finite
set, say of size n, and let (a;);er be a sequence of elements of R indexed by I. Choose an arbitrary
ordering iy, ..., i, of I and define

Zai = aj + -+ a;,. (1.34)

The expression on the right-hand side of (1.34) makes sense (because the addition in R is associative,

see Exercise 1.6) and, crucially, its value is independent of the particular ordering i1, ..., i, (because
addition is commutative), so (1.34) is a valid definition. If I = @&, then, by convention, >, a; := 0.
When I = {1,...,n} for some n € N, we also use the notation " ; a; = Die(1,...n} @i-

Now let A € My, xn(R) and B € M, «,(R). Note that we require the number of columns of A to
match the number of rows of B. The product of A and B is the m-by-r matrix AB € My, «,(R)
given by

n
(AB)(i,j) = Y A(i, k)B(k, ) (1.35)
k=1
forall 1 <i < m, 1< j<r. Again, note that the addition and multiplication on the right-hand
side of (1.35) are the corresponding operations in the ring R.

Exercise 1.36. Let A € M,xn(R), B € Myx,(R), and C € M,s(R). Show that (AB)C = A(BC).

While Exercise 1.36 can be solved by a direct calculation, we will eventually establish a conceptual
reason for the equality (AB)C = A(BC) as well as for the specific way matrix multiplication is
defined.

By definition, the set M, x,(R) of all n-by-n matrices is closed under matrix addition and
multiplication. Furthermore, these operations, restricted to M, «,(R), have identities: The additive
identity is the zero matrix, i.e., the n-by-n matrix all of whose entries are zero; while the multiplicative

31f you wish to be pedantic, you could say that an m-by-n matrix over R is a function A: {1,...,m}x{1,...,n} > R.

4Actually, if you wish to be even more pedantic, you should note that the definition in ® doesn’t quite work, since
it identifies the (unique) m-by-0 matrix with the (unique) n-by-0 matrix, even if m # n, which breaks down the rules
of matrix multiplication.
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identity is the identity matrix I,,(R) (or simply I, if the ring R is understood from the context),
which looks like this:

10 --- 0

01 --- 0
I, = .

00 1

In other words,
1 ifi=j;
I,(i,5) = '
n(6:9) {0 if i # .
In fact, M, xn(R) is a ring:
Exercise 1.37. Show that M, «,(R) is a ring under the matrix addition and multiplication.

Another useful matrix operation is transposition. The transpose of a matrix A € My,x,(R) is
the matrix AT € M,,«,(R) given by AT (i,7) := A(j,4) forall 1 <i<n, 1 <j<m.

Exercise 1.38. Let A € M,,x,(R) and B € M, ,(R). Prove that (AT)T = A and if R is commuta-
tive, then (AB)" = BTAT.

1.F. An application of linear algebra over an unusual field

One of the results that we will prove is that for any field F', there is a way to assign to each matrix
A over F a natural number rank(A), called the rank of A, with the following properties:

(rl) rank(l,) = n for all n e N;

(r2) if A€ Mpy,xn(F), then rank(A) < min{m,n};

(r3) if A€ My xn(F) and B € My, »,(F), then rank(AB) < min{rank(A), rank(B)}.
The reader is probably familiar with at least some of these properties in the case of matrices with
real entries; what makes this result particularly striking is that the same holds for matrices over an
arbitrary field. The proof of the next theorem shows the power of a judicious choice of a field:

Theorem 1.39 (Babai—Frankl?). Let n, m be positive integers and suppose that Sy, ..., Sy, are
subsets of the set {1,...,n} such that:

e for each i, the size of S; is odd;

e for all distinct i, j, the size of the intersection S; N S is even.

Then m < n.

Two quick remarks before we start the proof: First, there are exponentially many (2"~!, to be
precise) distinct subsets of {1,...,n} of odd size, and it is remarkable how drastically this number
decreases when we add the requirement that the pairwise intersections of the sets must be even.
Second, the bound m < n is sharp, since the n sets {1}, {2}, ..., {n} all have odd size (namely 1)
while their pairwise intersections have even size (namely 0).

PrROOF. Form an m-by-n matrix A according to the formula

1 itjes;
A(i, j) = e (1.40)
0 ifj¢s5;.
We view A as a matrix over the field Fo. Consider the matrix B := AAT (where the matrix

multiplication is performed over Fy). Then B is an m-by-m matrix and, by definition,

B(i,j) = Y, A(i, k)A(j, k).
k=1
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The product A(i, k)A(j, k) is either 0 or 1, and it is equal to 1 only if A(i, k) = A(j,k) = 1. By
(1.40), we have A(i, k) = A(j,k) = 1 if and only if k € S; n Sj. Therefore,
B(i,j) = > 1=18n8;| (mod?2).
kESiﬁSj
(Addition is performed modulo 2, since we are working in Fs.) By the assumptions of the theorem,
dd ifi=j;
55 i { iti = j
even if ¢ # j.
Hence,
. 1 if i =j;
B(i,j) = e
0 if7+#7;
in other words, B is the identity matrix I,,,. And now we are done, since

(r1) T (r3) (r2)
m =" rank([,,) = rank(B) = rank(AA') < rank(4) < n. [

The proof of Theorem 1.39 given above uses only a minimum amount of linear algebra, and all
the missing details can be filled in quite easily. For matrices over Fo, the rank of an m-by-n matrix
A € My, «n(F2) can be defined by

rank(A) := logy |{Az : € M, x1(F2)}|. (1.41)

It is fairly straightforward to check that this definition fulfills conditions (r1), (r2), and (r3). For
instance, note that if A€ My, «,(F2), then {Ax : x € M,«1(F2)} S My, x1(F2), so

rank(A) = logy |[{Ax : © € M,x1(F2)}| < logy |Mymx1(F2)| = m.

On the other hand, the number of m-by-1 matrices that can be expressed in the form Az with
x € Mpx1(F2) cannot exceed the number of different choices for z, and so

rank(A) = logy |[{Ax : © € M,x1(F2)}| < logy |Myxi1(F2)| = n.
This proves (r2).
Exercise 1.42. Verify that the notion of rank given by (1.41) satisfies (rl) and (r3).

A definition similar to (1.41) works over any finite field. We will show that even over an infinite
field, there is a way to perform analogous “counting” arguments. Another difficulty that we will
tackle is finding simple ways for computing or estimating the rank of a given matrix.

Extra exercises for Section 1
Exercise 1.43. An integral domain is a commutative ring R in which 0 # 1 and for all a, b € R\{0},
we have ab # 0. By Lemma 1.29, every field is an integral domain.

(a) Give an example of an integral domain that is not a field.
(b) Prove that every finite integral domain is a field.

Exercise 1.44 (Characteristic). Let F' be a field. For n € N and a € F, define
n-a=a+a+---+a.
—_—
n summands

The characteristic of a field F' is the natural number char(F') that is equal to the smallest positive
integer n satisfying n -1 = 0 if such n exists, and 0 otherwise. Show that if char(F) > 0, then
char(F) is a prime number.

Exercise 1.45. We say that a field K contains a copy of a field F' if K has a subfield that is
isomorphic to F. Let K be a field.
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(a) Show that if char(K) = 0, then K contains a copy of Q.
(b) Show that if char(K) = p > 0, then K contains a copy of F).

2. VECTOR SPACES
2.A. The definition of a vector space

A central notion in linear algebra is that of a vector space. It is an abstract concept that captures
the properties of sets of solutions to systems of homogeneous linear equations.

Definition 2.1. A vector space over a field F' (also called an F-vector space) is a set V', whose
elements are referred to as vectors, equipped with a binary operation +, called (vector) addition,
and a function -: F' x V — V, called scalar multiplication, or scaling, such that:

(V1) (V,+) is an Abelian group;

(V2) foralla,be FandveV, (ab)-v=a- (b-v);

(V3) foralla, be FandveV, (a+b)- (a v) 4+ (b-v);
(V4) forallae Fand v, weV,a- (v+w) = (a-v) + (a-w);
(

V5) forallveV,1-v=w.

A vector space is an object that is heavily laden with operations (and the fact that many of them
share a name makes things even more confusing!). If V' is a vector space over a field F', then the
following operations are around:

the field addition on F', denoted +;

the vector addition on V, also denoted +:°

the field multiplication on F', denoted - or by juxtaposition; and

the scalar multiplication, which allows one to multiply a vector v € V by a field element
a € F, and is also denoted - or by juxtaposition.

These operations bring in with them some extra notation:

the additive identity in F', denoted 0;

the additive identity in V, also denoted 0;°

the additive inverse of an element a € F', denoted —a;
the additive inverse of an element v € V', denoted —uv;
the multiplicative identity in F', denoted 1;

the multiplicative inverse of a nonzero element a € F, denoted a~! or 1/a.

7

It is very important to keep in mind, however, that scalar multiplication is not a binary operation
on V', so there is no such thing as a “multiplicative identity in V.

Exercise 2.2. Let V be a vector space over a field F'. Show that for all a € F' and v e V,
Op-v=a-0y =0y and (—=1)-v = —v.
(Cf. Exercise 1.17.)

The definition of a vector space is a true Goliath. Thankfully, with few examples in hand, one
very rarely actually needs to apply it directly.®

5To make it absolutely clear which + is meant, people sometimes write things like + 7 and +v-, but only occasionally.

6You can, of course, clarify the matters by writing something like 0 and Oy . Also, people sometimes use boldface
zero: 0, or a zero with an arrow: 0, for the additive identity in V, but both these symbols are uncommon.

"One might think that there is no way to confuse the notation for the additive inverses in F' and in V since the
first one applies to the elements of the field F' and the second one to the elements of the vector space V. However,
nothing prevents an object = to be both an element of F' and of V' and to have different additive inverses there. Then,
the expression “—z” is ambiguous.

81f you’ve seen one vector space, you’ve seen them all!
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Example 2.3. This is the prototypical example of a vector space. Let F' be any field and consider
the set F™ of all n-tuples of the elements of F'. We can add and scale them as follows:
(1, oy xn) + (Y1y ooy yn) = (21 + Y1, Tn + Yn);
a-(r1,...,2,) = (ax1,...,axy,).
It is easy to check that these definitions give F™ the structure of an F-vector space. (Most of the
required properties follow simply because F' is a field.)

(x1 4+ y1, 22 + Y2)

1

Figure 1. Vector addition in R2.

Example 2.4. The set M, xn(F') of m-by-n matrices over a field F' is a vector space over F' under
matrix addition and entry-wise scaling: (a - A)(,7) = a(A(i,7)). This is a special case of Example
2.3, since an m-by-n matrix can be viewed as a tuple of elements of F' of length mn, and thus, as a
vector space over F, M, (F') is essentially the same as F™".

Example 2.5. Let F' be a field. Then F' is already equipped with addition and multiplication, and
these operations make F' a vector space over itself. (This is a special case of Example 2.3, since
F can be identified with F!.) More generally, suppose that F is a subfield of a field K. Then the
elements of K can be added to each other and multiplied by the elements of F', making K a vector
space over F'. Thus, for example, C is a vector space over R and R is a vector space over Q. Note
that R is at the same time also a vector space over R—it is important to remember which field you
are working over.

Example 2.6. A vector space must contain at least one element, namely its additive identity, and
it is possible to construct a vector space with only one element. To that end, consider a one-element
set {0}, whose only element is denoted 0. We can equip {0} with the structure of a vector space
over any given field F by setting 0 + 0 := 0 and a -0 := 0 for all a € F. It is trivial to check that
this is indeed a vector space. (It is sometimes convenient to think that this is also a special case of
Example 2.3 with n = 0.)

Example 2.7. Let F be a field and let FN denote the set of all infinite sequences (zo,21,...) of
elements of F'. By analogy with Example 2.3, define
(0, 21,--.) + (Yo,y1,--.) = (zo + Yo, 21 + Y1,...);
a-(xo,21,...) = (axo,ary,...).
This makes FN a vector space over F.
Example 2.8. This example is a common generalization of Examples 2.3 and 2.7. Let F' be a field
and let X be an arbitrary set. The set F'X of all functions from X to F' is an F-vector space under

the operations of pointwise addition and multiplication. That is, for each f, g€ FX, welet f+ g
be the function such that for all x € X,

(f +9)(@) = f(z) + g(z).
Similarly, for each f € FX and a € F, we let a - f be the function given by
(a- f)(x) = a(f(z)).

Example 2.3 is the special case of this construction for X = {1,...,n}, while Example 2.7 corresponds
to the case X = N.
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Example 2.9. For a set X, let P(X) denote the powerset of X, i.e., the set of all subsets of X.
We equip P(X) with the addition given by

A+ B:=AAB,
where A is the symmetric difference operation.? Also, let 0- A := @ and 1- A := A for all A e P(X).
These operations make P(X) a vector space over Fo. The easiest way to see this is as follows:

Exercise 2.10. Show that the Fa-vector space P(X) is isomorphic to F.

2.B. Subspaces

Let V be an F-vector space. When is a subset W < V a subspace of V, i.e., a vector space in its
own right under the operations inherited from V? First of all, W must be nonempty (recall that a
vector space can’t be empty—it must have an additive identity). Second, W must be closed under
the vector space operations; that is, for all z, y € W and a € F, the elements x + y and a - x must
be in W as well. Additionally, W must satisfy the axioms for being a vector space—but, as the
following very useful lemma asserts, we get the vector space axioms for free:

Lemma 2.11. Let V be a vector space over a field F'. A nonempty subset W < V is a subspace of
V' if and only if Wis closed under addition and scaling by the elements of F'.

PrRoOF. If W is a subspace of V, then it is closed under addition and scaling by definition. Now
suppose that W < V' is a nonempty subset of V' that is closed under addition and scaling. Most of
the properties required of a vector space hold in W simply because they hold in V' (since they say
something about all elements of a vector space). The only things to check are:

e Addition, restricted to W, has an additive identity. To that end, we will show that 0y € W.
o Every element x € W has an additive inverse in W. We will show that —x € W, where —z
is the additive inverse of x in V.

Since W is nonempty, there is at least one element x € W. But W is closed under scaling, so
Oy =0p-x €W,
as claimed. (Here we use Exercise 2.2.) Also, for any x € W, we have
—x = (=1)-x e W,
where we again use Exercise 2.2. |
Example 2.12. The set
{(x1,29,23) : x1 + 229 + 323 =0 and x; — x9 + 3 = 0}

is a subspace of R? (as a vector space over R). More generally, the set of solutions to a system of
homogeneous linear equations is a vector space. In some sense, the entire theory of vector spaces is
a way to generalize this example.

Example 2.13. The set C([0;1]) of all continuous functions f: [0;1] — R is a subspace of RI%1]
(considered as an R-vector space).

Example 2.14. The set )
{fecao;l]) | f<x>dm=o}

is a subspace of C([0;1]). This is analogous to Example 2.12, with the expression
1
f f(z)dz =0
0

9The symmetric difference of two sets A and B is the set consisting of all elements that belong to exactly one of
the sets A, B. In other words, AA B = (A u B)\(An B).
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playing the role of a homogeneous linear equation.

Example 2.15. The set of all twice-differentiable functions f: [0;1] — R satisfying
ff=f+f=0 (2.16)

is another subspace of C([0;1]). Here, (2.16) is playing the role of a homogeneous linear equation.

Example 2.17. The set A of all functions f: [0;1] — R that have an antiderivative (i.e., a function
F:[0;1] — R such that F’ = f) is a subspace of RI%. Notice that C([0;1]) is a subspace of A.

Exercise 2.18. Show that A # C([0;1]). Hint: Consider the derivative of 22 sin(1/x).

Example 2.19. The set of all sequences (xg, z1,...) of real numbers such that for every n € N,
Tn+2 = Tp+1 + Tn,

is a subspace of RY. One of the points in this subspace is the Fibonacci sequence (1,1,2,3,5,8,...).

Exercise 2.20. Show that the following sets are subspaces of RY:

(*(N) = {(a:o,xl,...) eRY : sup|z,| < oo};

neN

EI(N) = {(mo,xl,...) e RN . Z |z, | < oo};
n=0

*(N) = {(mo,:pl,...) eRY : i 2 < oo}.

(The last one is a bit tricky.)

Example 2.21. Let X be any set. Recall how in Example 2.9 we equipped the powerset P(X)
with the structure of an Fo-vector space. Now let [X]<% denote the set of all finite subsets of X.
Then [X]<% is a subspace of P(X) (because the symmetric difference of two finite sets is finite).

Example 2.22. This is an extension of Example 2.21. Let X be a set and let I’ be a field. For a
function f: X — F, let the support of f be the set

supp(f) :={x € X : f(z) # 0}.

Denote by [X — F]|=% the set of all functions f: X — F whose support is finite. Then [X — F]=%
is a subspace of FX. This example will become surprisingly important later.

0

Figure 2. The graph of a function with finite support.
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2.C. Linear functions

The notion of a linear equation over an abstract vector space is captured in the concept of a linear
function.

Definition 2.23. Let V and W be vector spaces over the same field F. A function ¢: V — W is
called linear (or, sometimes, F-linear) if:

(L1) for all z, y € V, p(z + y) = ¢(2) + ¢(y);
(L2) forallae Fand z eV, p(a-x) =a- p(x).

If op: V — W is a linear function, then the kernel of ¢ is the set
ker(p) :={x eV : p(x) =0} <V,

and the image of ¢ is the set
im(p) :={p(x) : zeV} < W.

Exercise 2.24. Show that if ¢: V' — W is a linear function, then ¢(0y) = Oy .
You should think of the kernel of ¢ as the set of solutions to the “generalized linear equation”
e(x) = 0.
The next lemma justifies this attitude by showing that ker(p) is a vector space:

Lemma 2.25. Let V and W be vector spaces over a field F' and let ¢: V — W be a linear function.
Then ker(yp) is a subspace of V' and im(y) is a subspace of W.

PROOF. Since 0 € ker(p) (see Exercise 2.24), the set ker(y) is nonempty. To check that ker(yp) is
closed under addition, consider any z, y € ker(¢). We have

oz +y) = @) +e(y) =0+0 =0,
so x + y € ker(p), as desired. Similarly, if = € ker(¢) and a € F', then
pla-z) =a-px) =a-0=0,

hence a - = € ker(p). By Lemma 2.11, we conclude that ker(y) is a subspace of V. Showing that
im(¢p) is a subspace of W is left as an exercise (see Exercise 2.26). [ |

Exercise 2.26. Prove that if V and W are vector spaces over a field F' and ¢: V — W is a linear
function, then im(y) is a subspace of W.

Several of the examples in §2.B are naturally described as kernels or images of linear functions.
Example 2.27. The function
R3 — R?: (21,29, 23) — (1 + 220 + 323, 21 — T + 23)
is R-linear. (Cf. Example 2.12.)

Example 2.28. The function

1
C@JDﬁRfHLf@Nw
is R-linear. (Cf. Example 2.14.)

Example 2.29. Let D([0;1]) denote the set of all differentiable functions f: [0;1] — R. It is a
subspace of RI%Y and the map

o: D([0;1]) — RO fos f
is linear. The image of ¢ is the space A from Example 2.17.
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2.D. Quotient spaces
In the light of the examples in §2.C, the following question appears natural:

Question 2.30. Can every subspace of a given vector space be expressed as ker(y) or im(y) for
some linear function ¢?

Recall that if W = ker(p), then W is the solution set for the “generalized linear equation”

o(z) = 0.

Thus, if the answer to Question 2.30 were positive, it would mean that linear equations are a general
way of identifying subspaces. The next theorem asserts that this is indeed the case:

Theorem 2.31. Let V be a vector space over a field F' and let W be a subspace of V. Then there
exist F'-vector spaces X and Y and linear functions

p: X >V and v: VoY
such that W = im(p) = ker(¢)).
PROOF. For X we can just take the space W itself with ¢: W — V being the identity map on W:
o(z) =z forall zeW.

Clearly, ¢ is linear and im(¢) = W by definition.

The construction of the space Y and the map ¢: V' — Y such that ker(¢)) = W is somewhat more
subtle. To motivate it, imagine that we are already given a linear map 1 such that W = ker(v).
Then, for all z € V and w € W, we must have

Pz +w) = P(x) +dp(w) = P(x) +0 = (). (2.32)
For x € V, let x + W denote the following subset of V:
c+W ={z+w:weW}

The set x + W is called the W-coset of x, or the translate of W by x. The set of all W-cosets is
denoted by V//W (so V//W is a set of sets). Note that W =0+ W € V//W. Observation (2.32) can
be summarized as, “1) is constant on the W-cosets.” Thus, for a coset S € V /W, we can set 1(S) to
be the common value of ¢(x) for all z € S.

The linearity of 1) imposes some restrictions on the relationship between the values 1(S) for
different cosets S € V/W. Indeed, for all x, y e V,

Pty + W) = da+y) = @) +P@y) = dla+ W) +dy+W). (2.33)
Similarly, if z € V and a € F, then we have
P((az) + W) = Y(az) = app(z) = a-P(xz + W). (2.34)

The idea now is to equip the set V/W itself with the structure of a vector space such that the map
¥ given by ¥ (z) = x + W satisfies (2.33) and (2.34) by virtue of the definition.
Specifically, we endow V /W with addition and scaling operations defined by the formulas

(+W)+(y+W)=(@+y)+W and alz+ W)= (azx)+ W. (2.35)

Some explanation is necessary here. The above expressions are really shortcuts for more technical
definitions. A more precise way to define, say, the addition on V /W would be as follows: Given two
cosets S, T € V/W, choose any x, y € V such that S =2+ W and T =y + W and set

S+T:=(x+y)+ W (2.36)
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This leads to the question, why is the right-hand side of (2.36) independent of the choice of z and y?
If we chose some other elements x’, ¢y’ € V such that S = 2/ + W and T = 3/ + W, then S + T would
be defined as (z' + ') + W, and we must make sure that

(x+y)+ W= +y)+W,
for otherwise (2.36) is not a proper definition of S + 7.

T+y ' +y

1 R S
\/ z ! \/
\_—

S
w

(0,0) (0,0)

Figure 3. Adding W-cosets S and T in two ways.

To deal with this issue, we will use the following observation:
Claim 2.31.1. Let v, ye V. We havex + W =y + W ifand only if xt —y e W.

Proof. Note that x = x+0e€x+ W. Hence, if t + W =y + W, thenz e y+ W, ie., x =y + w for
some w € W. But then w = x — y, and hence z — y € W, as desired.
Now assume that x —y € W. For each w € W, we have

r+w =y+(z—y) +w.
Since W is closed under addition, we conclude that (z —y) + we W, so x + w € y + W. Therefore,
r+Wcy+ W

On the other hand, if x —y € W, then y —x = (—1) - (x — y) is also in W (as W is closed under
scaling), and the same argument as before shows that

y+Wcxz+W.

Hence, x + W =y + W, as claimed. —

To show that the right-hand side of (2.36) is independent of the choice of x and y, suppose that
S=z+W=a2+Wand T =y+ W =19 +W. By Claim 2.31.1, the differences x — 2’ and y — 1/
belong to W. Therefore,

(x+y)— (@' +y) = (@-2)+y-y)eW,
since W is closed under addition. But this means, by Claim 2.31.1 again, that
(x+y)+W = +y)+W,
which is what we wanted.
Exercise 2.37. Show that the operation of scalar multiplication on V /W is similarly well-defined.
It is now easy to see that V /W is a vector space.

Exercise 2.38. Show that V /W, equipped with the operations given by (2.35), is a vector space.
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The vector space V//W is called the quotient of V' by W. The additive identity of V/W is W
(recall that W =0+ W € V/W). Consider the function ¢: V' — V/W given by
Y(x) =x+ W.
It is called the quotient map corresponding to W. The vector space structure on V /W is defined
precisely so as to make the quotient map linear; furthermore,
ker(¢p)) = {zeV x4+ W =W} = W.
This completes the proof of Theorem 2.31. |

Exercise 2.39. Let V be a vector space over a field F' and let W be a subspace of V. Let z € V
and S € V/W. Show that S =z + W if and only if x € S.

Exercise 2.40 (First isomorphism theorem). Let V and W be vector spaces over a field F
and let ¢: V — W be a linear function. Show that the space im(yp) is isomorphic to V/ker(¢p).

Extra exercises for Section 2

Exercise 2.41. For a real number z € R, let  (mod 1) denote the fractional part of z, i.e., the
unique number « € [0; 1) such that x — « is an integer. For o, 5 € [0;1) and r € R, define

a®f = (a+p) (mod1) and rOa = (ra) (mod1).
Does this definition make [0;1) into an R-vector space?

Exercise 2.42 (Direct sums). Fix a field F. The direct sum of two F-vector spaces V and W is
the F-vector space V @ W defined as follows. As a set, V@ W is equal to V x W, and addition and
scalar multiplication on V @ W are defined component-wise:

(v1,w1) + (v2,w2) == (v + Vo, w1 + wo) and a-(v,w) = (a-v,a-w).

Prove that a function f: V — W is linear if and only if its graph is a subspace of V@ W.

3. BASEs
3.A. A “better” version of Theorem 2.31

Recall that the purported goal of Theorem 2.31 was to show that every subspace of a vector space
can be defined by a “generalized system of linear equations.” In that regard, Theorem 2.31 is not
entirely satisfactory. Imagine that W is a subspace of, say, R, viewed as a vector space over R.
Then, according to Theorem 2.31, W is the kernel of the quotient map R®> — R®/W. This is not
particularly illuminating, because the quotient space R® /W is defined to have precisely this property;
in some sense, it is not a very “natural” space.

This situation is remedied by the following fact:

Theorem 3.1. Let V be a vector space over a field F and let W be a subspace of V. Then there
exist linear functions

p: V-V and v V-V
such that W = im(p) = ker(¢)).

If W is a subspace of R, Theorem 3.1 asserts that W is the kernel of some linear function
R> — R5. It is not hard to see that this is equivalent to identifying W with the solution set of an
“honest-to-goodness” system of five homogeneous linear equations in five variables.

Let us ponder on how we could try to prove Theorem 3.1 in a specific case: Suppose that V = R,
viewed as a vector space over QQ (so only scaling by the rationals is allowed), and W = Q. To prove
that W is the image of a linear map from R to R, we have to find a Q-linear function ¢: R - Q
that is not identically zero.
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Since we don’t know what else to do, let’s take an arbitrary real number and decide where ¢
should send it. Say, take the number 1 and declare ¢(1) := 1. Since ¢ must be Q-linear, we then
also have

pla) = a-p(1) = a, for all a € Q.

But the values of ¢(z) for irrational x are still undefined. So take some irrational number, say /2,
and declare p(y/2) := 1. Again, ¢ must be Q-linear, and we are forced to have

ola+bv2) = a-o(1)+b-9(V2) = a+b, for all a, be Q.

Thus, the values of ¢ are determined for all real numbers of the form a + by/2 with a and b rational.
But, for instance, ¢(+/3) is still undefined, so we can declare ¢(+/3) := 1, which forces

ola+bvV2+ceV3) = a+b+e, for all a, b, ce Q.

Yet, there are still infinitely many real numbers x for which ¢(z) is undefined. ..

In the above attempted construction, we were building a sequence of real numbers 1, v/2, v/3,
.... To each of the numbers in the sequence, we could assign the value of ¢ arbitrarily, but these
arbitrary decisions were forcing particular values at some other real numbers. If the values at all
real numbers were determined, we would have our desired . For this, the sequence 1, /2, v/3, ...
must have the properties of a basis for R over Q. In this section, we will define what a basis is
formally and show that every vector space has one.

3.B. Spanning sets and independent sets
Exercise 3.2 (important). Let V and W be F-vector spaces and let ¢: V' — W be a linear map.
Show that:
e © is surjective <= im(p) = W;
e ¢ is injective <= ker(p) = {0}.
Exercise 3.3. Let V' be a vector space over a field F' and let YW be a nonempty family of subspaces
of V. Show that ()W, the intersection of all W € W, is also a subspace of V.

Remark 3.4. Note that the family W in Exercise 3.3 is allowed to be infinite.
Using the result of Exercise 3.3, we can make the following important definition:

Definition 3.5. Let V' be a vector space over a field F' and let X < V be a subset of V. Let Wx
be the set of all subspaces W < V such that X < W. Since V € Wy, the family Wx is nonempty,
and hence we can define the span of X to be the space

Span(X) := ﬂ Wx.

In other words, Span(X) is the smallest subspace of V' that contains X. Sometimes, we write
Span (X)) instead of Span(X) to explicitly indicate that we are working with vector spaces over F
(for instance, if we want to make a distinction between Spang(X) and Spang(X) for X < R).

Exercise 3.6. Verify the following properties of span:
Span(@) = {0} and Span(V) = V;

X < Span(X);

Y € X — Span(Y) < Span(X);
Span(Span(X)) = Span(X).

Definition 3.5 describes the span of X abstractly and does not provide a concrete way of determining
whether a given vector y is in Span(X). Such a concrete description is supplied by the next lemma:
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Lemma 3.7. Let V be a vector space over a field F' and let X < V be a subset of V. Define
Span®(X) to be the set of all linear combinations of elements of X, i.e., vectors of the form

a1T1 + -+ anTn, (3.8)

where aq, ..., an, € F and x1, ..., x, € X (this includes the case n = 0, in which, by convention,
expression (3.8) evaluates to 0y). Then Span®(X) = Span(X).

PrROOF. We have Span®(X) < Span(X) because Span(X) contains X and Oy and is closed under
addition and scaling. Conversely, Span(X) € Span®(X) because, as can be easily checked, Span®(X)
is a subspace of V' containing X. |

Note that (3.8) involves only finitely many elements of X, even if X itself is infinite (this is to be
expected since there is no way to define infinite sums in an arbitrary vector space). Nevertheless, it
is convenient to think of linear combinations of elements of X as sums running over the entire set:

Z c(x) - x,
zeX

where all but finitely many of the coefficients c¢(x) are zero, which, in effect, makes the sum finite.
Recall from Example 2.22 that [X — F|<% is the set of all functions ¢: X — F whose support
supp(c) = {x € X : ¢(x) # 0} is finite. For each such c € [X — F|=%, it makes sense to define

lx(c) = Z clx) - x e V.
rzeX

This gives a linear function £x: [X — F|<* — V. With this notation, Lemma 3.7 can be stated as:
Span(X) = im(lx).

Definition 3.9. Let V' be a vector space over a field F'. We say that a set X < V is:

e spanning if im(¢x) = Span(X) =V, i.e., if the function £y is surjective;

e independent if ker({x) = {0}, i.e., if the function £x is injective;

e a basis if it is both spanning and independent, i.e., if the function £x is bijective.
Remark 3.10. Explicitly, ker(/x) = {0} means that for any c e [X — F|=%,

Zc(m)-mzo <= ¢(z) =0 for all x € X.
reX

Remark 3.11. Since the map fx: [X — F|<* — V is linear, if X is a basis for V, then £x is an
isomorphism of vector spaces, and thus V' is isomorphic to [X — F]<%.

Exercise 3.12. Show that a subset of an independent set is independent. Show that a superset of
a spanning set is spanning.

Once we have found a basis for a vector space, we have full control over the linear functions on
V', as explained by the following theorem:

Theorem 3.13 (Linear functions in terms of a basis). Let V and W be F-vector spaces.
Suppose that B < V is a basis for V. Then for each function ¢: B — W, there exists a unique
linear function ¢: V. — W such that ¢(x) = ¢(z) for all x € B, and this ¢ is given by the formula

& <Z c(x) - :L‘) = Z c(x) - p(z). (3.14)

zeB reB

ProoOF. This is a theorem that “proves itself,” meaning that once we “unwrap” its statement, it
becomes almost tautological. Suppose that ¢: V — W is a linear map that extends . Since B is
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spanning, every element of V' can be written as a linear combination of elements of B, i.e., in the
form ) _pc(x) -z for some c e [ X — F|=%. Since ¢ is linear, it respects addition and scaling, so

¢ (Z c(:c)-x) = D ple@)-2) = Y ela)- px) = ), e(@) - p(2).

zeB zeB zeB zeB

This shows that ¢ must be defined by (3.14), which proves its uniqueness. Furthermore, since B is
independent, every element of V' can be expressed in the form ), _pc(x) -z in only one way, and
thus (3.14) is a valid definition. It remains to verify that the function ¢ given by (3.14) is linear,
but that is a straightforward exercise. |

3.C. The first fundamental theorem of linear algebra and its ramifications

Theorem 3.15 (First fundamental theorem). Every vector space has a basis.
Moreover, if V is an F-vector space, I < V is an independent set, S € V is a spanning set, and
I < S, then there exists a basis B such that | € B < S.

We will prove Theorem 3.15 in the next subsection. For now, let us consider some of its
consequences. For instance, we can now easily deduce Theorem 3.1:

Theorem 3.1. Let V be a vector space over a field F' and let W be a subspace of V. Then there
exist linear functions

p: V-V and v V-V
such that W = im(p) = ker(¢)).
ProoOF. By Theorem 3.15, W has a basis By . Since Byy is, by definition, an independent set, we
may apply the “moreover” part of Theorem 3.15 with I = By, and S = V' to obtain a basis B for V'

such that By € B. By Theorem 3.13, there exist linear functions ¢: V — V and ¢: V — V such
that for all x € B,

x if z € By; 0 if x € By;
p(r) = : and  1p(z) = :
0 if ze B\Bw, x if x € B\By.

We claim that W = im(p) = ker(¢)), as desired. Indeed, consider any vector v € V. Since B is a
basis for V, there is a unique way to express v as a linear combination of the elements of B:

v = Z c(x) - x,
zeB

where ¢ € [B — F|=%. Separating the terms corresponding to the basis vectors in By and in

B\Byy, we can write
v o= 2 c(x) -z + Z c(x) - x.
IEBW xEB\BW
Then

pv) = Y cla)-ple) + Y cl@) pla) = ) cx)-a (3.16)

x€Bw zeB\Bw z€Bw

This shows that ¢(v) is a linear combination of elements of By, and hence p(v) € W and im(p) <€ W.
On the other hand, any linear combination of the elements of By can appear as the last expression
in (3.16), and, since By spans W, this means that W < im(¢p).

Exercise 3.17. Show that p(w) = w for all we W.

Proving that W = ker(¢)) is left as an exercise. |
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Theorem 3.15 is much less obvious than might seem at first. We are used to thinking about vector
spaces such as R™ (over R), where a basis is easy to find:

(1,0,0,...,0), (0,1,0,...,0), (0,0,1,...,0), ..., (0,0,0,...,1).
On the other hand, consider the space RY of all infinite sequences of real numbers. It is tempting to
guess that the following infinite set should be a basis for this space:
e0 :=(1,0,0,0,...),
e1 :=(0,1,0,0,...),
es :=(0,0,1,0,...),

However, this guess is wrong! Indeed, the sequence
(1,1,1,1,...),

all of whose entries are equal to 1, is not in the span of {eg, e, e2,...} (because linear combinations
only involve finite sums). In fact, the span of {eg, e1,es,...} is the space [N — R]=% of all sequences
with finite support (i.e., with only finitely many nonzero entries). Actually, any basis for RY is much
larger than the set {eg, e1, €2, ...}—it is necessarily uncountable.'®

The following corollary is another indication of how surprising Theorem 3.15 is:

Corollary 3.18 (to Theorem 3.15). Every F-vector space is isomorphic to a space of the form
[X — F|=% for some set X.

PROOF. See Remark 3.11. [ |

So, for example, R, viewed as a vector space over Q, is isomorphic to [X — Q]<%* for some set X.
In fact, one can show that R is isomorphic to [R — Q]<®. What’s more, R?, viewed as a vector
space over Q, is also isomorphic to [R — Q]<%, and hence, R? and R are isomorphic as Q-vector
spaces!'! In other words, there exists a Q-linear bijection f: R? — R. Let us split this statement
into two parts:

e there is a bijection f: R? — R;

e such a bijection can be made Q-linear.
Without the second part, constructing an arbitrary bijection f: R? — R is actually not difficult.
Below we describe an injection R? — R; making it into a bijection is left as an exercise.'?

Lemma 3.19. There exists an injective function f: R?> — R.

PROOF SKETCH. We have to describe a way to “encode” a pair of real numbers (a,b) into a
single real number ¢ so that a and b can recovered from ¢ uniquely. One way to achieve this is to
write @ and b in decimal, adding leading zeros if necessary to ensure that the integer parts of a and
b are of the same length, and then assemble c as follows:

intersperse
[ lifaz=0 integer 1ifb>0 integer the digits of the
€= ( 2ifa<0 > (part of a) < 2ifb <0 ) (part of b) ’ fractional parts
of a and b
So, for example, if a = 314.1592... and b = —1.2345.. ., then ¢ = 13142001.12539425. . .. |

10A set X is uncountable if there is no surjection N — X in other words, if there is no way to list all the elements
of X in a sequence xo, T1, T2, . ...

11They are not isomorphic as R-vector spaces though.

12Although one might say that an injection from R? to R that also leaves some of the elements of R uncovered is
even more counter-intuitive than a bijection!
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Exercise 3.20. Describe a bijective function f: R? — R.

It turns out that there is no “explicit” way, like in the above proof of Lemma 3.19, to describe a
Q-linear injection R? — R. It follows from results in the area of mathematics called descriptive set
theory that every Q-linear function f: R? — R that one can “explicitly write down” (the technical
term is “Borel”) must be continuous. (This phenomenon is known as automatic continuity.) And it
is fairly easy to see that a continuous function R? — R cannot be injective.

How can this be? How can we prove that a Q-linear bijection f: R? — R exists without being
able to explicitly describe it? This apparent paradox is a consequence of the fact that the proof of
Theorem 3.15 relies on the so-called Aziom of Choice. It is one of the generally accepted axioms of
set theory that form the foundation of mathematics. While most other axioms assert the existence
of “concrete” sets, such as the empty set or the powerset P(X) of a given set X, the Axiom of
Choice postulates the existence of a certain function without explicitly stating what it is:

Axiom 3.21 (Axiom of Choice). Let F be a set of nonempty sets. Then there exists a function
ch: F — | JF such that for all X € F, we have ch(X) € X.

The function ch in the Axiom of Choice is called a choice function, because it “chooses” one
element ch(X) from each set X € F. Notice that the Axiom of Choice does not specify how the
chosen element ch(X) is determined; it merely claims that some choice is possible.

Finally, let us point out that Theorem 3.15 crucially relies on the fact that F' is a field. If we
replace the field F' by a commutative ring R in the definition of a vector space, we obtain a structure
called a module over R (so, a vector space is a module over a field). The definition of a basis makes
sense for modules as well as for vector spaces, but if R is not a field, then a module over R may not
have a basis. Here’s a simple example:

Example 3.22. Let n be an integer > 2. The set Z,, of residues modulo n is naturally a module
over Z, but this module does not have a basis. Indeed, for every x € Z,,, we have

n-r=0 (modn),

so the set {z} is not independent. Hence, the only independent set in Z,, is &, and it is certainly
not spanning. Note, however, that if n is prime, then Z, = ), does have a basis as a vector space
over F,, (any one-element set {x} with z 5 0 is a basis).

3.D. Proof of Theorem 3.15

Lemma 3.23. Let V be a space over a field F. Let I <V be an independent set and let y € V\I.
The following statements are equivalent:

(1) I v {y} is not an independent set;
(2) y € Span(I).
PROOF. (1) = (2). If the set I U {y} is not independent, then we can write

apy + a1ry + - + apx, = 0,

where 1, ..., x, € I and not all of the coefficients ag, a1, ..., a, are zero. Since I is independent,
we must have ag # 0; thus,
a a
y = - =T e Span(7).
ag ag

(2) = (1). Since y € Span(I), y can be expressed as a linear combination of elements of I:
Y = a1x1 + -+ apkn.

But then y can be expressed in two distinct ways as a linear combination of elements of I U {y},
meaning that the set I U {y} is not independent. |
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Lemma 3.23 gives a convenient criterion for when a given independent set is a basis. Say that an
independent set I < V is maximal if there is no independent set J <€ V with J 2 I. Similarly, a
spanning set S is minimal if there is no spanning set 7" such that T' < S.

Lemma 3.24. Let V be an F-vector space and let X < V. The following statements are equivalent:
(1) X is a basis;
(2) X is a maximal independent set;
(3) X is a minimal spanning set.

PrRoOOF. We will prove the equivalence (1) <= (2), while (1) <= (3) is left as an exercise.
(1) = (2). Assume that X is a basis. Consider any y € V\X. Since X is spanning, y € Span(X).
By Lemma 3.23, the set X U {y} is not independent, and hence X is a maximal independent set.
(2) = (1). Assume that X is a maximal independent set. We need to argue that X is spanning.
to that end, consider any y € V. If y € X, then y € Span(X) by definition, so assume y ¢ X. But
then the set X U {y} is not independent, which, by Lemma 3.23, means that y € Span(X). |

Definition 3.25. We say that sets A and B are comparable if A < B or B £ A. A chain is a set
C of pairwise comparable sets.

Recall that | JC denotes the union of all the sets in C; i.e.,
UC = {z : x € A for some A € C}.
Example 3.26. The set {{0}, {0,1}, {0,1,2}, ...} is a chain. The union of this chain is N.
Example 3.27. More generally, if Ay, Ay, As, ... are sets such that
Ayc Ayc Ay -+,
then the set {Ap, A1, Aa,...} is a chain, whose union is Ag U A; U Ag U .. .. Similarly, if
AyD A1 DAy D+,
then {Ag, A1, Ag, ...} is a chain, whose union is Ay.

Example 3.28. The set {(—o0;«) : a € R} is a chain. The union of this chain is R.

Observe that if C is a chain and Ay, ..., A, € C (when n is finite), then there is an index 7 such
that A;, = A1 u... U A,.

Lemma 3.29. Let V' be a vector space over a field F'. If C is a chain of independent subsets of V,
then the set | JC is also independent.

PROOF. Suppose, towards a contradiction, that C is not independent. This means that there exist
some 1, ..., T, € | JC and nonzero ay, ..., a, € F such that

a1ry + -+ + apxy = 0.

Since z1, ..., zy € [ JC, there are sets A;, ..., A, € C such that x; € Ay, ..., z, € A,. But since C
is a chain, there is an index i such that A; = A; u ... U A,. Therefore, x4, ..., x, € A;, and hence
A; is not independent. This is a contradiction. |

Remark 3.30. It is important in Lemma 3.29 to assume that C is a chain, since a union of
independent sets is not, in general, independent. For instance, the sets

{1,y and  {(2,2)}
are independent in R?, but their union {(1,1), (2,2)} is not.

With Lemma 3.29 in hand, we can deduce Theorem 3.15 from the following general fact, known
as Zorn's lemma:
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Theorem 3.31 (Zorn’s lemma). Let F be a family of sets with the following properties:

(Z1) @ e F;
(Z2) if Ae F and B < A, then B € F;
(Z3) if C < F is a chain, then | JC € F.

Then F has a maximal element; i.c., there is a set A € F such that there is no B € F with B 2 A.

Remark 3.32. Theorem 3.31 is not the most general form of Zorn’s lemma. In particular, assump-
tion (Z2) can be removed, while (Z1) can be weakened to F # & (see Theorem 4.3).

PROOF THAT EVERY VECTOR SPACE HAS A BASIS. Let V be an F-vector space and let F
be the set of all independent subsets of V. Then F satisfies the assumptions of Zorn’s lemma (where
(Z3) is given by Lemma 3.29), and hence F has a maximal element. By Lemma 3.24, a maximal
independent set is a basis, and hence we are done. |

Exercise 3.33. Prove the “moreover” part of Theorem 3.15. Hint: Consider the family F of all
sets X < S\I such that I u X is independent.

What remains is to prove Theorem 3.31; this will be done in the next subsection.

3.E. Proof of Zorn’s lemma

The Axiom of Choice is obviously true, the well-ordering
principle obviously false, and who can tell about Zorn’s lemma?

Jerry L. Bona

This is likely the most challenging proof in these notes, but coming to grips with its logic can be
immensely beneficial, as it involves several fundamental ideas that play an important role throughout
mathematics.

We argue by contradiction. Let F be a family of sets satisfying (Z1), (Z2), and (Z3) and assume
that F has no maximal element. In other words, for each A € F, there is some B € F such that
A < B. Due to (Z2), we may in fact assume that B = A u {z} for a single element x ¢ A. (This is
the only reason for including (Z2) in the list of assumptions.)

3.E.1. The plan of attack.—Before we proceed to the proof, let’s try to build some intuition about
the structure of F. By (Z1), @ € F. Since & is not a maximal element of F, there is some ag such
that {ag} € F. But since {ag} is also not maximal, there is some a; # ag such that {ag,a1} € F.
Repeating this argument, we obtain an infinite sequence of sets

@ < {ao} < {ao, a1} < {ag,ar,a2} < -+,
all of which belong to F. Now notice that

{2, {ao}, {ao,a1}, {ao,a1,as}, ...}

is a chain, so we can apply (Z3) and conclude that the union of this chain is in F; that is, we have
{ag, a1, a9, ...} € F. Thus, we've found an infinite set in F. But that’s not all. The set {ag,as,...}
is also not maximal—hence, there is some by such that {ag,a1,...} U {bo} € F. As before, we can
repeat this argument to obtain an infinite sequence of sets

{ao,al,...} - {ao,al,...} u{bo} e {ag,al,...} o {bo,bl} - {ao,al,...}u{bo,bl,bg} [

and then use (Z3) to conclude that {ag, a1, ...} U {bo,b1,...} € F. In other words, we are able to add
infinitely many new elements to any set in F. Iterating this construction, we now get a sequence

{ao,al,...} c {ao,(ll,...}u{bo,bl,...} o {ao,al,...}u{bo,bl,...}u{co,cl,...} e
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But this sequence is again a chain, so we can apply (Z3) to infer that
{ag,al,...} U {bo,bl,...} V) {Co,cl,...} u--- e F.

And so on—this process can be continued indefinitely.

Our strategy now is to identify the “final stage” of this process: the collection of all sets that will
ever appear in this construction. We will denote this collection 7y (this choice of notation will make
sense soon). So, 7o should look like this:

To = {@, {ao}, {ao,al}, {ao,al,ag}, .........
{ao,al, .. .}, {ao,al, .. } o {bg}, {ao,al, .. } U {bo,bl}, {ao,al, .. } o {bo,bl,bg}, .........
{ao,al, .. } o {bo,bl, .. .}, {ao,al, .. } v {bo,bl, .. } v {Co}, .........
{ao,al, .. } v {bo,bl, .. } o {CO,Cl, .. .}, .........

{ag,a1,...} U{bo,b1,...} U{co,c1,. - F Uiy

By definition, for every set A € Ty, 7o also contains a set A U {z} with x ¢ A. As well, for every
chain C < 7y, the union (JC of this chain is in 7y. And here’s the punchline:

The set Ty itself is a chain!

This means that (_J 7o € 7o. But then there is some new element x ¢ | ] 7 such that (| J 7o) v {z} € To,
which is, of course, impossible.

This is all nice and well, I hear you say, but what 4s this 7y, exactly? “All the sets that will
ever appear in this construction” is far from a precise definition. For that matter, how is “this
construction” defined? To address these questions, and make the above intuition into a rigorous
proof, note that on each step of the construction we do one of the following two things:

(i) either we add a new element to a set that has already been constructed;
(ii) or we take the union of a chain of constructed sets.

Thus, we could say that 7g is “the set of all sets that can be built from @ by repeatedly applying
operations (i) and (ii).” However, this is also not fully satisfactory, since it is not clear what
“repeatedly” means here (you should keep in mind that we have to repeat (i) and (ii) infinitely many
times). What we will actually do is let 7y be the smallest set that contains @ and is closed under
operations (i) and (ii). (This is reminiscent of the definition of the span of a subset X < V: It can
be both defined as the set of all vectors that can be obtained from X by taking linear combinations,
and as the smallest subspace of V' containing X.)

3.E.2. Towers and the Induction Principle.—Recall that, since F has no maximal element, for each
A € F, there is some x ¢ A such that A U {z} € F. Pick one such x and denote it f(A). Define

A= AU {f(A)}.

By definition, A’ € F, A < A’ and A’ contains precisely one element that is not in A, namely f(A).
We call A’ the successor of A. (This is where we use the Axiom of Choice.)

Call a subset 7 < F a tower if it has the following properties:

(T1) @ eT,;

(T2) if Ae T, then A’ € T;

(T3) if C < T is a chain, then | JCe T.

Note that there is at least one tower, namely F. Let Ty be the intersection of all towers; that is,
A e 7y if and only if A € T for every tower 7.

Exercise 3.34. Show that 7 is a tower.
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Thus, T is the smallest tower.'® By definition, 7o contains those and only those sets that must
belong to every tower; morally speaking, this should mean that 7 is the set of all sets that can be
obtained from @ by repeatedly taking successors and unions of chains. To vindicate this intuition,
we have to prove that 7y is a chain.

Claim. If we can show that Ty is a chain, then we can finish the proof of Zorn’s lemma.

ProOOF. If 7y is a chain, then, applying (T3) with 7y in place of C, we get | J 7o € To. By (T2),

(U 7o) € To as well, and thus f(|J 7o) € (JTo) < JTo- But f(IJ7o) ¢ 7o by definition, and this

contradiction completes the proof of Zorn’s lemma. |
If P is a property of sets, then we write P(A) to mean that the set A has P.

Lemma 3.35 (Induction Principle). Let P be a property of sets. Suppose that:
(I1) P(2);
(I2) for all A € Ty, if P(A), then P(A’);
(I3) if C < Ty is a chain of sets that have P, then P(| JC).

Then P(A) for all A€ Tp.
PROOF. The assumptions of the lemma mean that the set
U:={AeTy: P(A)}
is a tower contained in 7g. But 7y is the smallest tower, and hence U = Ty. |

The name “Induction Principle” is due to the analogy between Lemma 3.35 an the principle of
mathematical induction, which says that if P is a property of natural numbers such that:
(1) P(0); and
(2) for all n € N, if P(n), then P(n + 1),

then P(n) for all n € N. Condition (I1) is analogous to (1), while (I2) plays the role of the induction
step (2). However, in Lemma 3.35, there is one more assumption, namely (I3), which handles the
induction after “more than N steps.”

3.E.3. The proof.—We say that a set A € Ty is To-comparable if A is comparable with every B € 7.
Our goal is to show that every set A € Ty is To-comparable, since this would mean that 7 is a chain.
To this end, we will use the Induction Principle.

(I1) The empty set & is To-comparable, since @ < B for all B € 7.
(I2) This step is somewhat complicated, and we will come back to it later.

(I3) Suppose that C < Ty is a chain of To-comparable sets. Take any B € C. We have to show that

Bc U C or Uc c B.
There are two cases to consider.

Case 1: There is some A € C such that B < A. In this case B < [ JC.

Case 2: There is no A € C such that B < A. Since every A € C is Tp-comparable, and hence
comparable with B, this means that for all A € C, we have A € B. But then | JC € B as well.

Now let’s return to (I2). Let A € Tg be Tp-comparable. We need to show that A’ is Typ-comparable
as well. To that end, take any B € 7. Our goal is to prove that B € A’ or A’ < B.

Case1l: B< A. Then B < A’ as well.

Case 2: B &€ A. Since A is Ty-comparable, this means that A < B. In this case, we want to
conclude that A’ € B. To achieve this, we will prove the following lemma:

13Perhaps calling it the slimmest tower would be even more accurate.



28 LINEAR ALGEBRA

Lemma 3.36. For A € 7y, define
Uy = {BeTy: BS Aor A B}.
If A is To-comparable, then Us = 7.
Once Lemma 3.36 is established, we may conclude that if B & A, then A’ € B, as desired.

It now remains to prove Lemma 3.36.

PrRooOF OF LEMMA 3.36. The proof uses the Induction Principle again.

Exercise 3.37. Show that (I1) and (I3) hold; that is, prove that:
o Jely;
e if C © Uy, is a chain, then | JC € Ua.

To verify (I12), let B € Uy. We have to show that B’ € U,. Since B € Uy, there are three cases:

Case 1: A’ € B. Then A’ € B’, and hence B’ € Uy.
Case 2: B = A. Then B’ = A’, and hence B’ € Uy,.

Case 3: B < A. This is the most interesting case, and the crux of the entire proof of Zorn’s
lemma. We wish to show that B’ € A. Suppose, towards a contradiction, that B’ &€ A. Since A
is Tp-comparable, it is, in particular, comparable with B’. Thus, if B’ & A, then A < B’. This
means that B’ contains all the elements of A\B (of which there is at least one since B & A) plus
also at least one element not in A. Therefore, | B\ B| = 2. But, by definition, the only element of
B’ that is not in B is f(B), i.e., |B’\B| = 1. This contradiction completes the proof. [ |

3.F. Applying Theorem 3.15

We already saw a corollary of Theorem 3.15, namely Theorem 3.1. Another immediate consequence
of Theorem 3.15 is the existence of a large family of functions R — R that are Q-linear but not
R-linear. Indeed, let B be a basis for R as a Q-vector space. Then every function ¢: B — R has a
(unique) Q-linear extension ¢: R — R; but unless there is a real number ¢ € R such that ¢(x) = cx
for all x € B, the function ¢ is not going to be R-linear.

Exercise 3.38 (Q-linear functions are weird). A set S < R? is dense in R? if for every point
p € R? and for every real € > 0, there is a point ¢ € S such that the distance between p and ¢ is less
than e. In other words, S is dense in R? if S intersects every disc D < R? of positive radius:

D There is a point of S somewhere in here

If we were to draw a picture of a dense subset of the plane giving each point an arbitrarily small
positive thickness, it would look like this:

Suppose that f: R — R is a function that is Q-linear but not R-linear. Show that the graph of f is
dense in R%. Hint. What is Spang(T'f)?
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With Theorem 3.15 in hand, we can now solve Problem 1.1. The proof given below uses a basis
for R as a Q-vector space to reduce a question about real numbers to a question about finite fields.

Theorem 3.39. Let 0 < a1 < --- < a, be distinct integers and suppose that f: Z — R is a function
such that for all k € Z and ¢ € Z™", we have

fk+a1l)+ f(k+axl)+ -+ f(k+apl) =0. (3.40)
Then f(m) = 0 for all m € Z.

PRrROOF. This elegant argument is due to the user grobber on The Art of Problem Solving.
Suppose that f satisfies (3.40). Plugging in k = m —a,, and ¢ = 1, we get

fm) = —f(m —an +a1) = f(m —an + az) = = f(m —an + an1). (3.41)
The main consequence of (3.41) is that if we know the values
f(m_an)7 f(m_an+1)7 R f(m_1)7

then we can apply (3.41) repeatedly to compute the values f(m), f(m + 1), f(m + 2), and so on.
Similarly, plugging in £k = m — a; and ¢ = 1 gives

f(m) = =f(m—a1+a2) — f(m—a1 +a3) — - — f(m—a1 + ayp),
which means that knowing the values
fm+1), fom+2), ..., fm+am)

is enough to also compute the values f(m), f(m —1), f(m —2), &tc. To summarize, f is completely
determined by its values at any a,, consecutive integers.
After these preliminary observations, we proceed in four steps.

STEP 1: Let p be a prime number > n. If f: Z — IF,, satisfies (3.40), then f(m) = 0 for all m.

Proof. Indeed, let p be a prime number > n and suppose that f: Z — ), satisfies (3.40). There are
only finitely many (namely p®*) distinct sequences of elements of F), of length a,,, while there are
infinitely many integers. Therefore, for some ¢ < j, the sequences

FGH+1), fG+2), oy flitan)  and  (FG+1), fG+2), ..oy fG +an))

coincide. But then f(m) = f(m + j — ) for all m € Z, i.e., f is periodic with period ¢ := j — 1.
Applying (3.40) with k = m and ¢ = ¢ gives

0=f(m+at)+- -+ f(m+ayt) = n- f(m).
Since p > n, this implies f(m) = 0, as desired. —
STEP 2: If f: Z — Z satisfies (3.40), then f(m) = 0 for all m.

Proof. For a prime number p > n, define f,: Z — F,, by

fp(m) = f(m) (mod p).
By Step 1, for every m € Z, we have f,(m) = 0, i.e., f(m) is divisible by p. The only integer that is
divisible by every prime number bigger than n is 0, so f(m) = 0, as claimed. —

STEP 3: If f: Z — Q satisfies (3.40), then f(m) = 0 for all m.

Proof. Let d be a common denominator of f(1), f(2), ..., f(an), and let g(m) = df(m). Then
g(1), g(2), ..., g(ay) are integers. Moreover, g still satisfies (3.40). From (3.41), we conclude that
g(m) is an integer for all m € Z, and, by Step 2, g(m) = 0, and hence f(m) =0, for all m € Z.
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Finally, consider a function f: Z — R that satisfies (3.40). Let B < R be a basis for R as a vector
space over Q. For each m € Z and = € B, let f,(m) be the coefficient of z in the representation of
f(m) as a linear combination of the elements of B; in other words, write

fm) = 3 fuolm) -
xeB

where the values f,(m), € B, are rational numbers, only finitely many of which are nonzero. We
claim that for each z € B, the function f,: Z — Q satisfies (3.40). Indeed, we have

flE+arl) 4+ flktanl) = > folb+arl) - z+-+ > folk +anl) -z

xeB xeB
= 3 (ol + arl) + -+ folk +ant) -z = 0,
zeB

and, since B is a basis, this is only possible when
folk+a1l)+ -+ fo(k+anl) =0 for all z € B.
Hence, by Step 3, fz(m) = 0 for all m. But then f(m) = > .50-2 = 0 as well, and we are done. W

Extra exercises for Section 3

Exercise 3.42. Let V be a vector space over a field F' and let W < V be a subspace of V.

(a) Show that there is a subspace W’ < V such that every vector v € V' can be uniquely expressed
as a sum v = w + w' with w e W and v’ € W'.
(b) Show that every subspace W’ < V as in (a) is isomorphic to V/W.
(¢) Conclude that V' is isomorphic to W & (V/W).
Exercise 3.43. Consider the R-vector space RY of all infinite sequences of reals. For each o € R, let
ea = (1,a,a%,0?,...).

Show that the set {e, : a € R} is independent. This means that you can find as many independent
vectors in RY as there are real numbers!

Exercise 3.44. This exercise outlines a proof of the following theorem:

Theorem 3.45. Let R be a rectangle with side lengths 1 and z. If x is irrational, then R cannot
be tiled by finitely many squares (so that the squares have disjoint interiors and cover all of R).

Given f: R — R, define the f-area of a rectangle R with side lengths a and b by the formula
Af(R) = f(a)- f(D).

(a) Let I, J < R be two intervals and consider the rectangle R := I x J. Suppose that the
intervals I and J are tiled by finitely many smaller intervals:

I=Lu...ul, and J=J1u...u .

Then R is tiled by the rectangles R;; := I; x J;, 1 <i<n,1<j<m,in a grid-like fashion:

Jm le an

Ji| Ri1 [Ro1| -+ |Rm

L L ... I,
Prove that if f: R — R is Q-linear, then

Ap(R) = Y D7 Ap(Ry).

i=1j=1
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(b) Suppose that a rectangle R is tiled arbitrarily by finitely many rectangles Q1, ..., Qk:

Qi |

Q2

Prove that if f: R — R is Q-linear, then
k
Ap(R) = Y Af(Qi).
i=1

(¢) Show that if x € R\Q, then there is a Q-linear map f: R — R such that

f(1)y=1 and f(z) =—-1.
(d) Deduce Theorem 3.45. Hint: What can you say about the f-area of a square?

4. DIMENSION
4.A. The second fundamental theorem of linear algebra

The goal of this subsection is to show that any two bases in a vector space have the same size:

Theorem 4.1 (Second fundamental theorem). Let V' be a vector space over a field F'. If By,
By € V are bases for V', then there is a bijection f: B; — Bs.

In particular, if By is finite, then By is also finite and |B;| = |Ba|.
According to Theorem 4.1, the F-vector spaces
{(00=F" F=F' F? F3 ... F"

are pairwise non-isomorphic. Also, the vector spaces [N — F|<% and [R — F|<% are not isomorphic
to each other, because there is no bijection N — R (even though both N and R are infinite sets).
Together, Theorems 3.15 and 4.1 give a complete characterization of all F-vector spaces up to
isomorphism.

Lemma 4.2 (Exchange lemma). Let V' be an F-vector space and let I, B < V. Suppose that the
set I is independent, while B is a basis for V. Then for every = € I\B, there is some y € B\I such
that the set (I\{z}) v {y} is independent. Furthermore, if I is a basis for V', then so is (I\{z}) u {y}.

PRrROOF. First, we find y € B\I such that that the set S, := (I\{z}) U {y} is independent. Suppose,
towards a contradiction, that no such y exists. This means that for all y € B\I, the set Sy is not
independent, i.e., y € Span(I\{z}) (see Lemma 3.23). Thus, B\I < Span(/\{z}). Since x ¢ B, we
also have B n I < I\{z}; hence, B < Span(I\{z}). Since Span(B) = V, we conclude that the set
I\{z} is spanning, and in particular x € Span(I\{z}), which contradicts the independence of I.

To prove the “furthermore” part of the lemma, assume that I is a basis for V and let y € B\I be
an arbitrary element such that the set S, is independent. We claim that S, is also spanning, and
hence it is a basis, as desired. By definition, I'\{z} < Sy, so we only need to show that z € Span(.S,).
But Sy u {z} = I U {y} is not an independent set, so « € Span(S,) by Lemma 3.23. [

Using the exchange lemma, it is easy to derive Theorem 4.1 in the case one of By, B> is finite.
Indeed, suppose that By contains n elements:

Bl = {371,33‘2, .. .,Jin}.
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Applying the exchange lemma repeatedly, we can replace the elements of Bi, one by one, by elements
of By, producing a sequence of bases, each containing n distinct elements:

{y1, 2, ..., zn},
{y17y27 e 7x71}7
{ylay27 .. ay'IZ}

Since {y1,...,yn} S By and By itself is a basis, this means that By = {y1,...,yn}.

It might seem that when both By and Bs are infinite, we need a more powerful tool than the
exchange lemma, which only treats one element of B1\Bj at a time. It turns out, however, that just
dealing with one element at a time is enough, even when the sets By and By are infinite, thanks
to Zorn’s lemma. Similar arguments based on Zorn’s lemma are often used in different parts of
mathematics.

We will need a form of Zorn’s lemma that is slightly stronger than Theorem 3.31:

Theorem 4.3 (Zorn’s lemma #2). Let F be a nonempty family of sets such that if C = F is a
chain, then | JC € F. Then F has a maximal element.

Exercise 4.4. For a family F of sets, let 7 denote the set of all chains C < F.

(a) Show that for every family F of sets, the set F* satisfies the assumptions (Z1), (Z2), and
(Z3) of Zorn’s lemma (in the form of Theorem 3.31).

(b) Conclude that F* has a maximal element; in other words, every family F of sets contains a
maximal chain C < F.

(¢) Deduce Theorem 4.3.

Another tool we will need is a classical result known as the Bernstein—Cantor—Schroder theorem,
which allows one to construct a bijection between two sets out of a pair of injections:

Theorem 4.5 (Bernstein—Cantor—Schroder). Let A and B be sets. If f: A— B and g: B — A are
injective functions, then there also exists a bijection h: A — B.

PrRoOOF. Define a sequence of sets By, Ag, B1, A1, B, Ag, ... as follows:
By = B\im(f); A, = g(Bp); Bhi1 = f(4y).
By definition, A, € A and B,, € B for all n € N. Let
A=A uA UAy U ... and A" = A\A';
B =ByuBiuByu... and B":= B\B'.

Note that A" < im(g), so we can define a function h: A — B by

f(a) ifae A”;
h = 4.6
(a) {g_l(a) ifae A'. (4.6)
This function h is a desired bijection (exercise!). [

PrROOF OF THEOREM 4.1. Let By, Bo € V be two bases of V. In view of Theorem 4.5, we
just have to show that there is an injective function from B; to Bs.
An exchange is a function f with the following properties:
dom(f) € By and im(f) € Ba;
f is injective;
the sets im(f) and Bi\dom(f) are disjoint;
the set Iy == im(f) u (B1\dom(f)) is independent.
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Let &€ be the set of all exchanges. Note that £ # &, since the empty function @: & — &, whose
domain and image are both empty, is an exchange. (In particular, Iz = Bj, so Iz is independent.)
We wish to apply Zorn’s lemma to £ to obtain a mazimal exchange, and then to show that it must
be an injection By — By. Of course, Zorn’s lemma applies to families of sets, while £ is a family of
functions, but we can view each f € £ as a set by identifying f with its graph, i.e., with the set

Lp={(z,y) : f(2) =y}
Thus, f < g means that dom(f) < dom(g) and g(x) = f(x) for all z € dom(f).

Exercise 4.7. Show that if C < £ is a chain of exchanges, then | JC is an exchange.

With Exercise 4.7 in hand, we can apply Theorem 4.3 to conclude that there is a maximal
exchange f € £. Suppose, towards a contradiction, that By\dom(f) # @ and let « be an arbitrary
element of By\dom(f). We will show how to extend f to z; i.e., we shall construct an exchange f’
such that f' o f and dom(f’) = dom(f) u {z}. This would contradict the maximality of f, thus
proving that dom(f) = B, as desired. There are two cases to consider:

Case 1: x € By. Then we can set f'(x) := z, and it is not hard to check that f’ is an exchange.

Case 2: x ¢ By. Then we have x € If\Bs, so we may apply the exchange lemma to the basis By
and the independent set Iy to obtain y € Ba\If such that (If\{z}) U {y} is independent. Then
we can set f'(z) = y.

Hence, dom(f) = By and f: By — Bs is a desired injection. [

4.B. Dimension and finite-dimensional spaces

Definition 4.8. A vector space V is called finite-dimensional if it has a finite basis, and infinite-
dimensional otherwise. The size of any basis in a finite-dimensional vector space V is called the
dimension of V', denoted dim V. Sometimes, we write dimp V instead of dim V' to explicitly indicate
that we are working over F.

Example 4.9. Let F be a field and let n € N. Then the dimension of F™ is n.

Example 4.10. Let F be a field and let m, n € N. Then the dimension of M, «,(F), as a vector
space over F', is mn.

Example 4.11. The dimension of C as a vector space over R is dimg C = 2, since the set {1,i}
is a basis for C over R. On the other hand, C is also a vector space over C, and dim¢ C = 1. (In
general, every field is a one-dimensional vector space over itself.)

Example 4.12. As a vector space over Q, R is infinite-dimensional. The most straightforward
way to see this is by using basic set theory, which, unfortunately, falls outside the scope of this
course.' Tt is fairly easy to guess an infinite subset of R that is independent over Q, but it is usually
surprisingly hard to prove that it is independent. For instance, the set

{/p : pis a prime number}

is Q-linearly independent, but the proof of this fact is quite complicated. However, the independence
of the following set is easy to verify:

Exercise 4.13. Show that the set {Inp : p is a prime number} is Q-linearly independent.

Lemma 4.14. Let V be a finite-dimensional vector space and let W < V be a subspace. Then W
is also finite-dimensional and dim W < dim V. Furthermore, if W # V', then dim W < dim V.

MEor the initiated: every finite-dimensional Q-vector space is isomorphic to Q" for some n € N; in particular, it is
countable. On the other hand, R is well-known to be uncountable.
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PROOF. Let By < W be any basis for W. Since By is an independent subset of V', there is a
basis B for V such that B 2 Byy. Then

dimW = |[Bw| < |B| = dimV,
as desired. Furthermore, if dim W = dim V', then By, = B, and hence W = V. |

Exercise 4.15. Let V be a finite-dimensional vector space. Show that the size of every independent
set I <€ V is at most dim V', while the size of every spanning set S € V is at least dim V.

Exercise 4.16. Let V' and W be finite-dimensional vector spaces over a field F'. Show that
dim(Ve W) = dimV + dim W.

Theorem 4.17 (Rank-nullity). Let V and W be vector spaces over a field F' and let p: V — W
be a linear function. Suppose that V' is finite-dimensional. Then the spaces ker(y), im(y) are also
finite-dimensional, and we have

dimV = dimker(p) + dimim(¢p).

ProOOF. By Exercise 3.42, V is isomorphic to ker(¢) @ (V/ker(¢)). By Exercise 2.40, V/ker(y) is
isomorphic to im(y). Thus, V is isomorphic to ker(¢)@®im(y), and we are done by Exercise 4.16. W

Corollary 4.18. Let V be a finite-dimensional vector space and let p: V — V be a linear function.
The following statements are equivalent:

(1) o is injective;

(2) o is surjective;

(3) dimker(y) = 0;

(4) dimim(p) = dim V.

PRrROOF. The equivalences (1) <= (3) and (2) <= (4) follow from Exercise 3.2 (the second of these
also relies on Lemma 4.14). By Theorem 4.17, dim ker(¢) = dim V' — dim im(¢), so dim ker(¢) = 0
if and only if dim V' = dimim(¢), which proves (3) < (4). [ |

Remark 4.19. The equivalence (1) <= (2) in Corollary 4.18 may fail for infinite-dimensional V. For
example, consider the linear function ¢: FN — FN given by ¢(zq, x1, 29, ...) i= (21,29, 23,...). Then
¢ is surjective but not injective. Similarly, the function 1: FN — FN given by (g, z1, 22, ...) =
(0, zg,x1,...) is injective but not surjective.

4.C. Using dimension: algebraic numbers

Recall that a complex number a € C is algebraic if there is a nonzero polynomial p(z) with rational
coefficients such that p(a) = 0. (For more details, see Example 1.23.) Denote the set of all algebraic
numbers by Q. We have now the tools to prove the following theorem, which was stated in §1.C:

Theorem 1.25. Q is a subfield of C.

Lemma 4.20. For a € C, let Sy = {* : ke N} and V,, := Spang(Sa). Then « is algebraic if and
only if the Q-vector space V,, is finite-dimensional.

PROOF. Suppose that V,, is finite-dimensional. Then S, is not an infinite independent set, and
hence there exists a nontrivial linear combination of elements of S, with rational coefficients that
evaluates to zero; i.e., we can write

a-l4+a-a+ay-a®+-+a, a" =0,

for some n e N, aq, ..., a, € Q, and a,, # 0. Thus, « is a root of a nonzero polynomial with rational
coefficients, as desired. Conversely, suppose that

ap + a1 + aga® + -+ + apa” = 0,
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for some n €N, ag, ..., a, € Q, and a,, # 0. We claim that then
Vo = Spang ({1, a, o2, ..,
and, in particular, dimg V,, < n. It suffices to show that o* € Spang ({1, ... ;a1 for all k e N.
The proof is by induction on k. For k& < n — 1 the statement is clear; furthermore, we have
a a a A
ot =~ Tla - 2 T e Spang ({1, a,. .., 0™, (4.21)
(07 (07 (7% Gn

We need to show that if ¥ € Spang ({1, ...,a"1}), then o**! € Spang({1,a,...,a""'}). Write

o = co+aa+ca’+ -+ ey h
Then o' € Spang ({1, ...,a"!}) since
o = a-af = cpataa+ o+ cpga™ ! + Cp—10". [ |
. ~ — ——
€ Spang ({a,...,a”~1}) € Spang({1,a,...,a"~1}) by (4.21)

Lemma 4.22. Let S, T < C and let ST := {st : se€ S, t e T}. If the Q-vector spaces Spang(S)
and Spang(T') are finite-dimensional, then so is Spang(ST); moreover,

dim Spang(ST') < (dim Spang(S)) - (dim Spang(T')).

PROOF. Suppose that {s1,...,s,} S Sand {t1,...,t,} S T are bases for Spang(.S) and Spang(7T'),
respectively. We claim that

Spang(ST) = Spang({sit; : 1 <i<n,1<j<m}),
and thus dim Spang (ST') < nm, as desired. It suffices to show that for all s€ S and t € T,
st € Spang({sit; : 1 <i<n,1<j<mj).

To that end, write
n m
s = 2 a;S; and t = Z bjt;,
i=1 j=1

where the coefficients a;, 1 < ¢ < n, and b;, 1 < j < m, are rational. Then

st = (2%&) ( lbjtj> = Z;le(aibj)(sitj) € Span@({sitj c1<i<n,1<5< m}) [
i= j i=1j=

PrRoOF OoF THEOREM 1.25. The only things that require verification are:

e Q is closed under addition;

e Q is closed under multiplication;

e Q is closed under taking additive inverses;

e Q is closed under taking multiplicative inverses of nonzero elements.

Perhaps somewhat surprisingly, the latter two bullet points are relatively straightforward to check,
while the former two are somewhat tricky. Indeed, suppose that a € Q\{0}. Then we can write

ap + a1+ asa® + -+ + aya” = 0, (4.23)
for rational ag, ..., a, € Q, not all of which are zero. Dividing both sides of (4.23) by a™, we obtain
an + an_10" " Fap_o(a N2+ +agla”H)" =0,

and hence a~! is also algebraic. Additive inverses can be treated in a similar fashion.

Exercise 4.24. Show that Q is closed under taking additive inverses.
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Now we proceed to show that Q is closed under addition. Let a, 3 € Q. By Lemma 4.20, this
means that the associated Q-vector spaces

Vo = Spang(Sa) and Vs = Spang(Ss)
are finite-dimensional. We wish to show that o + 5 € Q, i.e., that the space

Va+p = Spang(Sa+s)
is also finite-dimensional. Observe that for each k € N, we have

k
B\ .
(a+B)F = Z} <i>o/,6’k " € Spang({a'f’ : i, j € N}) = Spang(SaSs),
1=
where the product S,Sg is defined as in Lemma 4.22. Therefore, V, ;5 S Spang(S,53); but the
space Spang(S,Sp) is finite-dimensional by Lemma 4.22, and hence we are done.
Finally, the proof that Q is closed under multiplication is left as an exercise.

Exercise 4.25. Show that Q is closed under multiplication. |

It is worthwhile to go over a concrete example to see what the proof of Theorem 1.25 means
computationally. Suppose that a, 5 € C satisfy

l+a+a’=0 and —1-28+p32=0. (4.26)

Then « and g and algebraic and, by Theorem 1.25, so is their sum « + 8. How do we actually find
a polynomial p(x) with rational coefficients such that p(a + §) = 07 The strategy is to express
the powers of a + 3 as linear combinations of the four monomials 1, o, 3, and af3, using (4.26) to
eliminate all the higher powers of o and 5. Then we will be able to find a nontrivial linear relation
between the five expressions 1, a + 3, (a + )2, (a + )3, and (« + )%, showing that a + 3 is a
root of a polynomial of degree at most 4.

To begin with, we repeatedly apply (4.26) to express the first five powers of « (resp. [3) as linear
combinations of 1 and « (resp. 1 and ():

o’ =1 gY =1

al =« pl=p

a? = —-1-—a p% =1+283

= —a—(-1—-a) =1 B2 =pB+2(1+28) =2+58
ot = a Bt =28+5(14+28) =5+ 128

Now we compute:

(@+B)°’ =1, (a+pB)' =a+p,
(a+8)? =a’+2a8+ 6% = (-1—a)+2af + (1+28) = —a + 26 + 20,
(a+B)? = a® + 3028 + 3ap% + 52

=1+3(-1—a)f+3a(l+28)+ (2+50)
34 3a+ 26+ 3ap,

(a+ Bt = o' + 4038 + 6028% + 405 + 1
= a+46+6(—1—a)(1+28)+4a(2+58) + (5 + 120)
= —1+3a+ 48 + 8ap.
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We can now form a matrix whose rows correspond to the monomials 1, «, 8, o3 and whose columns
correspond to the powers of a+ 3, from 0 to 4, that contains the coefficients of the above expressions:

10 03 -1
01 -13 3
01 2 2 4
00 23 8

To find a desired polynomial p, we just need to find a nontrivial linear combination of the columns
of A that evaluates to zero, which requires solving a system of 4 homogeneous linear equations in 5
variables. This is a computationally tractable problem; for instance, we find that

A =

1 0 0 3 ~1 0
0 1 1 3 3 0

ol 217 2 [ 22| ] « |~ ol
0 0 9 3 8 0

and hence
T+2a+p)—(a+B)? =2+ B)>+ (a+p)* = 0.

Exercise 4.27. Show that if a complex number a € C is a root of a nonzero polynomial with
algebraic coeflicients, then a is itself algebraic.

Exercise 4.28. When K is a field and F' < K is a subfield of K, we say that K is an extension of
F. Recall that if K is an extension of F', then K can be naturally viewed as a vector space over F.
A field extension K 2 F' is called finite if the dimension of K, as an F-vector space, is finite. A
field extension K 2 F is algebraic if for each element a € K, there is a nonzero polynomial p(z)
with coefficients in F' such that p(a) = 0. Thus, C is a finite extension of R and Q is an algebraic
extension of Q.

Let F be a field. Show that every finite extension of F' is algebraic.

Extra exercises for Section 4
Exercise 4.29. Fix distinct ay, ..., a, € R and let P,,_;(R) denote the set of all polynomials p(z)
with real coefficients in a single variable x of degree at most n — 1.
(a) Show that P,_1(R) is an R-vector space. What is its dimension?
(b) For each 1 < i < n, let g;(x) be the polynomial
gi(z) = (x—a1) - (x —ai—1)(x — ajy1) - (x — ap) (n — 1 factors).

Let Q == {g; : 1 <i < n}. Show that @ is an independent subset of P,_1(R). Hint: What
would happen to a linear combination of elements of @ if we plug in «a; instead of x?

(¢) Conclude that for every p € P,,_1(R), there exist coefficients ¢y, ..., ¢, € R such that
o) e, e
(x—ay) - (x—ap) T —a T —an

This fact is used in calculus to find antiderivatives of rational functions.

Exercise 4.30. Show that if F' is a finite field, then the size of I is a power of a prime number.
Hint: Use the result of Exercise 1.45.

5. SPACES OF LINEAR FUNCTIONS
5.A. The dual space

Definition 5.1. Let V, W be vector spaces over a field F. We use Lin(V, W) to denote the set of all
linear functions f: V — W. Note that Lin(V, W) is a subspace of WV, viewed as an F-vector space
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under pointwise addition and scaling. In the special case when W = F', we set V* := Lin(V, F') and
call V* the dual space of V.

Let B € V be a basis for an F-vector space V. For each z € B, let 2%: V — F be the unique
linear function such that for all y € B,

1 ify=ux
% o 9
5(Y) {O if y # x.

Explicitly, for each v € V, the value 27 (v) is determined as follows. Write v as a linear combination
of the elements of the basis B:

where c € [B — F|=%. Then we have
rp(v) = D ey) - 2hy) = ),
yeB

that is, 275 (v) is equal to the coefficient of x in the unique expansion of v as a linear combination of
the elements of B. In other words, we can write

v = Z rp(v) - x. (5.2)
zeB

Lemma 5.3. Let V be a finite-dimensional vector space over a field F' and let B €V be a basis
for V. Then B* := {z%; : x € B} is a basis for V*, called the dual basis corresponding to B.

PRrROOF. First, we show that B* is independent; this is true regardless of whether V is finite-
dimensional or not. Let ¢ € [B — F]=% and suppose that

Z clx) -z = 0. (5.4)
reB
Take any y € B and plug it into (5.4); we then obtain
0= ) c) zh(y) = cly),
zeB

ie., c(y) =0 for all y € B, as desired.
Now we show that Span(B*) = V*. To that end, let f € V*. We claim that

f=2 fla) = (5.5)
xeB

Since the set B is finite, the right-hand side of (5.5) is a valid linear combination, and hence (5.5)
implies f € Span(B*). To prove (5.5), we have to show that f agrees with the right-hand side of
(5.5) when applied to each vector v € V. And indeed, by (5.2), we have

flo) = f (2 ﬂfi’é(v)-w> = > ahv) - f(),

zeB reB
which precisely coincides with the right-hand side of (5.5) applied to v. |
Remark 5.6. The conclusion of Lemma, 5.3 fails if V' is infinite-dimensional. Consider, for example,
the space [N — F]=% of all infinite sequences of elements of F' with only finitely many nonzero

entries. The set B = {e,, : n € N} is a basis for [N — F|<%®, where ¢, = (e,,(0), e, (1),...) denotes
the sequence such that
. 1 ifi=mn;
en(i) = {

0 ifi#n.
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The corresponding elements of ([N — F]<*)* are the functions e} : [N — F|<® — F given by
er (X0, X1, ...) = Tp.

Now consider the linear function o: [N — F|<® — F given by

o(zg,x1,...) =20+ T1+ - . (5.7)

The right-hand side of (5.7) is a well-defined summation, since only finitely many of the entries x,
r1, ... are nonzero. It may be tempting to write

o=ej+el+--, (5.8)

but the expression on the right-hand side of (5.8) is not a valid linear combination; in fact, we claim
that o ¢ Span(B*). Indeed, if f € Span(B*), then f can be written as a finite linear combination of
elements of B*, so there is m € N such that

f=ao-e5+ - +am- €.
Then for all n > m, we have
flen) = ao-ej(en) + -+ am € (en) = 0.
On the other hand, we have o(e,) =1 for all n e N.

Exercise 5.9. Show that if V is an infinite-dimensional vector space and B < V is a basis for V,
then the set B* := {2% : = € B} is never a basis for V*.

Corollary 5.10. If V is a finite-dimensional vector space, then V is isomorphic to V*. |
Again, Corollary 5.10 fails for infinite-dimensional vector spaces.

Exercise 5.11. Let F' be a field and let X be an arbitrary set. Consider the vector space [X — F|<%
over F. Show that the dual space ([X — F]<®)* is isomorphic to FX.

Example 5.12. Consider the n-dimensional F-vector space F™. By Corollary 5.10, the dual space
(F™)* is also isomorphic to F™. An explicit isomorphism can be obtained by assigning to each tuple
(a1,...,ay,) € F™ the linear map F™ — F given by (x1,...,2,) — a121 + + - + anTp.

5.B. The double dual

Let V be a vector space over a field F. The space V** := (V*)* is called the double dual of V. Let
t: V. — V** be the map that sends each x € V' to the linear function ¢(z): V* — F given by

(t(z))(f) = f(x) for all fe V™.
Exercise 5.13. Show that the function ¢(x): V* — F is indeed linear.
Exercise 5.14. Show that the map ¢: V' — V** is an embedding; that is, it is a linear injection.
If V is finite-dimensional, then, by Corollary 5.10, we have a chain of equalities
dimV = dim V* = dim V**.
Hence, the injective linear map ¢: V' — V** must also be surjective, and thus, it is an isomorphism:
Lemma 5.15. If V is a finite-dimensional vector space, then v: V — V** is an isomorphism. 1

There is an important distinction between Corollary 5.10 and Lemma 5.15. While Corollary 5.10
asserts the existence of an isomorphism V' — V*, constructing such an isomorphism requires choosing
a basis for V, and the result essentially depends on this choice. On the contrary, Lemma 5.15
provides a “canonical” isomorphism V' — V** namely ¢, independent of any auxiliary choices.
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5.C. Annihilators
Definition 5.16. Let V be an F-vector space and let S € V. The annihilator of S is the set
Ann(S) :={feV* : S ker(f)}.
Exercise 5.17. Show that Ann(S) is a subspace of V*.

Lemma 5.18. Let V' be a vector space over a field F' and let W < V be a subspace. Then
W={zxeV : f(x) =0 for all f € Ann(W)}. (5.19)

PRrROOF. Let W' denote the right-hand side of (5.19). It is clear that W < W’. To establish the
opposite inclusion, consider any x € V\W. Let By € W be a basis for W. Since the set By u {x}
is independent, it can be extended to a basis for V. This means that any assignment By u {z} — F

can be extended to a linear function V' — F. In particular, there is f € V* such that f(z) = 1 while
f(w) =0 for all we By. Then f € Ann(W) and f(z) # 0, and thus = ¢ W". [ ]

Corollary 5.20 (Capelli-Fontené-Frobenius—Kronecker-Rouché-...). Let V' be a vector space over
a field F and let X < V. The following statements are equivalent for a vector v e V:

(1) v ¢ Span(X);

(2) there is f € V* such that f(x) =0 for all x € X, while f(v) # 0.

Exercise 5.21. Deduce Corollary 5.20 from Lemma 5.18.

Corollary 5.20 is important enough to have a name; furthermore, it has many different names
depending on where you are. In particular, it is called

Rouché—Capelli theorem in Italy and English-speaking countries;
Kronecker—Capelli theorem in Russia and Poland;
Rouché-Fontené theorem in France;

Rouché-Frobenius theorem in Spain and Latin America.

The following result is a simple (and somewhat facetious) application of Corollary 5.20. The
game Lights Out is played as follows. Let G = (V, E) be a finite graph!®. Suppose that at each
vertex of GG, there is a light bulb that can be in one of the two states: on or off. Each vertex of G
is equipped with a light switch. Flicking the switch at a vertex u € V' simultaneously changes the
states of the light bulbs at u and all the vertices adjacent to u. At the start of the game, all the
lights are off. The goal is to turn all the lights on in finitely many moves.'

Theorem 5.22 (Lights Out). For every finite graph G = (V, E), it is possible to turn all the
lights on using the rules of Lights Out.

Remark 5.23. It is important that our goal is to turn all the lights on. For example, if G is the
4-vertex graph shown below, then it is impossible to turn on precisely one light bulb:

Exercise 5.24. Show that if G is the graph from Remark 5.23, then it is impossible to turn on
precisely one light bulb. More generally, show that if every vertex of G has odd degree, then it
is impossible to turn on an odd number of light bulbs. (Solving this exercise may be easier after
reading the proof of Theorem 5.22 given below.)

15By a graph here we mean a simple graph, i.e., one in which no vertex is adjacent to itself and every pair of
vertices is joined by at most one edge.
1675 the name suggests, the original version involves turning all the lights off, but the two versions are equivalent.
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Before proving Theorem 5.22; let us quickly review some graph-theoretic notation. Let G = (V, E)
be a finite graph. For a vertex v € V, let Ng(v) denote the neighborhood of v in G, i.e., the set of
all vertices u € V that are adjacent to v:

Ng(v) ={ueV : uve E}.
The degree of a vertex v is the size of its neighborhood: degq(v) := |[Ng(v)].

Exercise 5.25 (Handshake lemma). Let G = (V, E) be a finite graph. Show that
3 dege(v) = 21E.
veV

Conclude that the number of vertices of odd degree in G is even.

Finally, for a subset U < V, the subgraph of G induced by U, denoted G[U], is the graph with
vertex set U in which two vertices are adjacent if and only if they are adjacent in G (see Fig. 4).

GlU]

Figure 4. Induced subgraphs

PrROOF OF THEOREM 5.22. To turn this into a linear algebra problem, we represent each state
of the lights by a vector z € FY such that for all u e V,

(u) 1 if the light at u is on;
x(u) =
0 if the light at u is off.

For each v e V, let s, € FY be the vector given by

() 1 ifu=wvorue Ng(v);
Sy(u) =
! 0 otherwise.

Also, let e := (1,...,1) € F¥ be the vector all of whose entries are 1. The key observation is that,
since we are working modulo 2, flicking the switch at a vertex v € V results in adding s, to the
vector x € FY representing the current state of the lights. This has two consequences, which are
otherwise not entirely obvious:

o the order of switches does not affect the resulting arrangement of lights; and
e it is never necessary to flick the same switch more than once.

Our goal is to show that for some vy, ..., vy € V, we have e = s, + - + sy, or, equivalently, e is
in the span of {s, : v e V}. Thanks to Corollary 5.20, it suffices to prove that whenever f € (FY)*
satisfies f(s,) = 0 for all v € V, then f(e) = 0 as well. Using the theory developed in §5.A, we can
describe all linear functions f € (FY)* explicitly:

Exercise 5.26. Let f: Fy — Fy be a linear function. Show that there is a subset U < V' such that

f(z) = Z:L‘(u) for all z € Fy .
uelU
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Therefore, our problem can now be restated as follows: Suppose that U < V' is a subset such that

Z sy(u) =0 for allve V. (5.27)
uelU

From this, we wish to deduce that

Ze(u) = Zl = |U| =0 (mod 2),

uelU uelU

i.e., the size of U is even. To this end, consider the induced subgraph G’ := G[U]. For each v € U,

Dsulu) = 1 + U A Ng()| = 1+|Ng)| = 1+ dege(v),
uelU —

the contribution of v the contribution of the

neighbors of v
and hence, by (5.27), the degree of every vertex in G’ is odd. Hence, by the handshake lemma, the

number of vertices of G'—i.e., the size of U—is even, as desired. |

5.D. Dual functions

Definition 5.28. Let V', W be vector spaces over a field F' and let ¢: V — W be a linear function.
The dual of ¢ is the function ¢*: W* — V* given by

e*(f)=fop for all f e W*.

Here o denotes composition of functions, as shown on the diagram below:

Example 5.29. If ¢: R — R is given by ¢(x) = 2z, then for every f € R* ¢*(f) is the function
R - R:z— f(2z).

Exercise 5.30. Let V', W be vector spaces over a field F.

(a) Show that if ¢ € Lin(V, W) and f € W*, then the function ¢*(f): V — F' is linear (and
hence it indeed belongs to V*, as asserted in Definition 5.28).

(b) Show that if ¢ € Lin(V, W), then the dual map p*: W* — V* is linear.

(¢) Show that the function Lin(V, W) — Lin(W*,V*): ¢ — ¢* is linear.

Exercise 5.31. Fix a field F'. For an F-vector space V, let idy : V — V denote the corresponding
identity map.

(a) Let V be an F-vector space. Show that (idy)* = idy«.
(b) Let U, V, and W be F-vector spaces and let ¢: U — V and ¢: V — W be linear maps.
Show that (1) o p)* = ¢* o4*. This situation is illustrated by the following diagram:
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Yoy
U 2 1%4 7 w
* %
U* d V* : W*

\_/

(Yop)* =p*or*

If you wish to impress your friends at a party, you can summarize the above statements as follows:

Taking duals is a contravariant functor from the category of F-vector spaces and
linear maps to itself.

Exercise 5.32. Let V', W be vector spaces over a field F.

(a) Show that the function Lin(V, W) — Lin(W*,V*): ¢ — ¢* is injective.
(b) Show that if W is finite-dimensional, then the function Lin(V, W) — Lin(W*,V*): ¢ — ¢*
is surjective, and hence it is an isomorphism of F-vector spaces.

Lemma 5.33. Let V', W be vector spaces over a field F and let ¢: V — W be a linear function.
Then ker(¢*) = Ann(im(y)).

PROOF. For each f e W*, we have

feker(p*) = ¢*(f) =0 < (¢*(f))(v) =0forallveV
p(v))=0forallveV

= f(
<~ f(w) =0 for all w e im(p)
<= f e Ann(im(yp)). u

Theorem 5.34. Let V, W be vector spaces over a field F' and let p: V — W be a linear function.
Then the F-vector spaces im(¢*) and (im(p))* are isomorphic.

ProOOF. From Lemma 5.33 and the first isomorphism theorem, it follows that
im(p*) = W*/ker(¢*) = W*/Amn(im(y)).
Let p: W* — (im(p))* be the function given by
p(f) = flimy  forall feW?,

where f|iy(,) denotes the restriction of f to the subset im(¢) of its domain. It is easy to verify that
p is linear. Also, p is surjective, since every linear function im(p) — F can be extended to a linear
function W — F (exercise!). Finally, ker(p) = Ann(im(y)) (this is essentially the definition of the
annihilator). Hence, by the first isomorphism theorem again,

(im(¢)* = im(p) = W*/ker(p) = W*/Ann(im(g)),
and we are done. [

Corollary 5.35. Let V., W be vector spaces over a field F' and let ¢: V — W be a linear function.
If the space im(yp) is finite-dimensional, then dimim(p) = dimim(p™*).

ProoF. By Corollary 5.10 and Theorem 5.34, dimim(y) = dim(im(p))* = dimim(¢*). [
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5.E. Representation of linear functions by matrices

The introduction of numbers as coordinates ... is an
act of violence.

Hermann Weyl

In this subsection we discuss a very convenient way of encoding linear functions via matrices. To
start with, we need to introduce the somewhat technical notion of an ordered basis. Let V' be a vector
space over a field F. We say that a tuple (x1,...,2z,) € V" is independent if the set {z1,...,z,}

is independent and the vectors 1, ..., x, are pairwise distinct. (So, for example, if x € V\{0},

then the set {z,z} = {z} is independent, while the pair (x,x) is not.) An ordered basis for V is

an independent tuple (x1,...,x,) such that Span({z1,...,x,}) = V; equivalently, {x1,...,2,} is a

basis and z1, ..., x, are distinct.

Exercise 5.36. Show that a tuple (z1,...,z,) is independent if and only if for all aq, ..., a, € F,
a1+t apxry, =0 <= a;=---=a,=0.

Let X = (z1,...,2y) be an ordered basis for V' (in particular, dim V' = n). Then for each v € V,
there is a unique sequence of coefficients a1, ..., a, € F such that
V=a121 + -+ QnTp.
We put these coefficients together in a column matrix and define [v]x € M, «1(F') by
ay
[v]x =
an,
The function V- — M,,«1(F): v — [v]x is an isomorphism of F-vector spaces.

Now let V and W be two F-vector spaces and let ¢ € Lin(V, W). If X = (x1,...,x,) is an ordered
basis for V-and Y = (yi,...,¥m) is an ordered basis for W, then we let [¢]x,y € My, xn(F) be the
m-by-n matrix such that for each 1 < < n, the i-th column of [¢]xy is [¢(z;)]y; in symbols,

[elxy = [ [e(z)]ly - [p(za)ly ]
Again, the map Lin(V, W) — My, xn(F): ¢ — [¢]xy is an isomorphism of F-vector spaces.
Example 5.37. Let P>(R) be the R-vector space of polynomials with real coefficients in a single
variable = of degree at most 2. Then X = (1,z,2?) is an ordered basis for this space. Consider the
linear function 0: Po(R) — P»(R) that sends each polynomial p € P»(R) to its derivative p/. Since
0(1) =0, 0(z) = 1, and d(x?) = 2z, we obtain that
10
0 2
00
Exercise 5.38. If dim V' = n and dim W = m, then what is dim Lin(V, W)?

0
[Dlxx =] 0
0

Exercise 5.39. Let V be a vector space over a field F' and let X = (z1,...,x,) be an ordered basis
for V. Show that if idy : V' — V denotes the identity function, then [idy|x x = I,,(F).

Exercise 5.40 (important). Let V' and W be vector spaces over a field F' and let ¢ € Lin(V, W).
Let X = (z1,...,2y) and Y = (y1,...,ym) be ordered bases for V' and W, respectively. Show that

[e(v)]y = [e]lxy[v]x forallve V.

(Juxtaposition on the right-hand side indicates matrix multiplication.) This is the reason why matrix
multiplication is defined the way it is.
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In view of Exercise 5.40, it makes sense to introduce the following notational convention. Let
A € My,xn(F). Then A defines a linear map T4: Myx1(F) = Myx1(F): v — Av, and, according
to Exercise 5.40, every linear function between two finite-dimensional vector spaces is “essentially”
of this form. We often conflate T4 with A; in particular, we write im(A) and ker(A) to indicate the
image and the kernel of T}, respectively.

Exercise 5.41. Let A € My, «x,(F) be an m-by-n matrix over a field F'. Let the columns of A be
Z1, ..., Tn. Show that im(A) = Span({z1,...,2n}).

Lemma 5.42. Let U, V, W be F-vector spaces and let p: U — V and ¥: V — W be linear maps.
Let X = (x1,...,20), Y = (Y1,---,Ym), and Z = (z1,...,2x) be ordered bases for U, V, and W,
respectively. Then

[Wovlxz = [Ylvzlelxy-
PRrROOF. Note that for all A€ Myyxm(F), B € My,xn(F) and for each 1 < i < n, the i-th column
of the matrix product AB is equal to A times the i-th column of B. In particular, we have
the i-th column of [¢]y z[¢]xy = [¢]y,z - (the i-th column of [p]xy)
= [Ylv,zle(@i)]y
[by Exercise 5.40] = [(¢(p(zi)))]z

= [Woe)(@i)]z
the i-th column of [¢) o p]x 7. [

Lemma 5.43. Let V and W be F-vector spaces and let ¢ € Lin(V,W). Let X = (z1,...,2y)
andY = (y1,...,ym) be ordered bases for V- and W, respectively, and let X* = (zf,...,z}) and
Y* = (yf,...,y%) be the corresponding dual bases for V* and W*. Then

[e*]yw x+ = ([elxy)"

Example 5.44. Before proving Lemma 5.43, let us consider a simple concrete example. Let
0: P2(R) — P»(R) be the linear function that sends each polynomial p € P5(R) to its derivative p’
(as in Example 5.37). Using the ordered basis X = (1, x,z?), we obtain

[COlxx =

o OO

0
2
0

S O =

Let the dual basis be X* = (fo, f1, f2). For a polynomial a + bz + cz?, we have
fola + bx + cx?) = a;
fila +bx + cx?) = b;
fala +bx + cz?) = c
Thus,
(@*(fo))(a + bz + cx®) = (food)(a+ bz + ca®) = fo(b+ 2cx) = b;
(0*(f1)(a + bx + cax?®) = (fi0d)(a+ bz +cax®) = fi(b+ 2cx) = 2¢;
(@*(f2))(a + bz + cz?) = (fa00)(a + bz + ca®) = fo(b+ 2cz) = 0.

Therefore, we conclude that

8*(f0) = f17 a*(fl) = 2f2a and a*(fQ) = 0,
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and hence
000 0107"
[0*]xsx+ = | 1 0 0| =]00 2 = ([0)xx)",
02 0 000

as predicted by Lemma 5.43.

PROOF OF LEMMA 5.43. Our aim is to show that [¢]x v (i,7) = [¢*]y* x*(j,¢) for all 1 <i <
m, 1 < j < n. Let us first compute [¢]x y (i, 7). By definition, the j-th column of [¢]x vy if [¢(z;)]y.
Recall that for each w e W, we have

= Z yi(w) -y (see (5.2)), hence [w]y =

| |

and thus [¢]x v (i,7) = yF(e(z;)) = (¥ o ¢)(z;). Now we need to compute [¢*|y* x+(j,7). Again,
by definition, the i-th column of [*ly* x* is [¢*(y])] x+. For each f € V*, we have

n f(z1)
= > f(zj) -2} (see (5.5)),  hence  [f]xx = : ,
=1 f(zn)

Therefore, the j-th column of [¢]x )y is

and so the i-th column of [¢*]y* x+ is

(™ (i) (1)
[¢*(wi) ] xx = :
(" (7)) (n)

Thus, [¢*lye.xe (8) = (¢*(5)) @) = (55 © £)(x3) = [l (), and we are done. C
Definition 5.45. Let F be a field and let A € M,;,»,,(F). The rank of A is rank(A) := dimim(A).

Exercise 5.46. Let A € M,,x,(F) be an m-by-n matrix over a field F'. Show that the rank of A is
equal to the largest number of independent columns of A.

Corollary 5.47. Let A € M,x,(F) be an m-by-n matrix over a field F. Then rank(A) = rank(A").

PROOF. Follows immediately from Corollary 5.35 and Lemma 5.43. |
Example 5.48. Here’s a simple application of Corollary 5.47. Let a1, ..., a, € R be distinct real
numbers and define -

vi=[1 a a? - ot | € My (R).
We claim that the tuple (v1,...,v,) is independent. If we were to show this directly, we would have

to consider the equation
v+ -+ cpup = 0,
which is equivalent to

cak + 40k =0 foral 0 <k <n-—1. (5.49)
From this, we have to deduce that ¢; = --- = ¢, = 0. Unfortunately, equations (5.49) involve
all of the variables a1, ..., o, at once and are hard to tackle. To simplify the problem, we first

apply Corollary 5.47. Let A be the n-by-n matrix whose columns are vy, ..., v, and let the rows
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of Abewy, ..., Wp_1, SO W = [ of o .. af ] By Corollary 5.47, the tuple (vy,...,vy) is
independent if and only if the tuple (wp,...,w,—1) is. Thus, we need to consider the equation
cowg + -+ + cp—1wp—1 = 0,
which is equivalent to
co+ecioy+ -+ cn_loz?*l =0 forall 1 <i<n. (5.50)

Notice that each equation in (5.50) involves only one variable «;. This means that the polynomial
p(z) :=co + c1x + -+ + c,_12" 7! has n distinct roots. But the degree of p is at most n — 1, so it

must be the zero polynomial and hence ¢y = --- = ¢,—1 = 0, as desired.
Exercise 5.51. Show that there exists an infinite sequence of vectors xg, x1, ... € R™ such that for
all iy <ig < ... < iy, the tuple (x;,, %4, ...,2;,) is independent.

Exercise 5.52. Verify the following claims (which were advertised back in §1.F):

(rl) rank(I,,) = n for all n € N;
(r2) if A€ Mp,xn(F), then rank(A) < min{m,n};
(r3) if A€ Mpxn(F) and B € My, x,(F), then rank(AB) < min{rank(A), rank(B)}.

5.F. Fast matrix multiplication

In view of the correspondence between matrix multiplication and composition of linear functions
established in §5.E, an important and natural question arises:

How quickly can we multiply two matrices?

Let R be a ring and let A, B € M, x»(R) be two n-by-n matrices over R. We shall view addition
and multiplication in the ring R itself to be elementary operations. By definition,

(AB)i.J) = 3 AGR)B(k. )
k=1

Thus, computing a single entry of AB requires adding n terms, each a product of two elements of R.
Since the matrix AB has n? entries, computing AB directly using the definition takes roughly n?3
steps. Somewhat surprisingly, there exist clever algorithms for matrix multiplication that take fewer
than a cubic number of steps. The first such algorithm was developed by Volker Strassen in 1969.
Instead of n3, Strassen’s algorithm requires only O(n?%") operations, where the big-O symbol
O means that the exact number of operations is upper bounded by n?8% times some constant
independent of n (which may vary depending on the particular implementation of the algorithm).
The exact value of the exponent is logy, 7 = 2.80...; we will soon see where this value comes
from. After Strassen’s seminal work, several improved algorithms have been proposed. In 1990,
Don Coppersmith and Shmuel Winograd introduced an algorithm with running time O(n?375-).
The Coppersmith—Winograd algorithm was unbeaten until 2010; the best currently known matrix
multiplication algorithm is a modification of the Coppersmith—Winograd algorithm due to Francois
Le Gall from 2014, with running time O(n?372). Finding the best possible matrix multiplication
algorithm is an important open problem in computer science; in particular, the following is an open
question:

Open Problem 5.53. Is it true that for every € > 0, there is an algorithm for multiplying two
n-by-n matrices with running time O(n?+€)?

While the later approaches are quite technical and fall beyond the scope of these notes, Strassen’s
algorithm is actually rather easy to explain.!” For convenience, assume that n = 2¥ is a power of

17 Another advantage of Strassen’s algorithm is that it is actually used in practice, whereas the other methods,
such as the Coppersmith—Winograd algorithm, only become superior for values of n that are too large to appear in
practical applications.
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2. The strategy is to reduce computing the product of two n-by-n matrices to multiplying several
pairs of (n/2)-by-(n/2) matrices and then proceed recursively. Let A, B € M,,«,(R). Split each of
A and B into four (n/2)-by-(n/2) “blocks,” as follows:

A App Bi1 B2
A = d B = .
[ A9 Agp } an [ Ba1 Bao ]

If we also write

Ci1 Ci2
AB =:
[ Co O |’
then
Ci1 = A B + A12Ba1; Cia = A11 B2 + A12Bao;

(5.54)
Co1 = Ao By + A2 Ba1; Cag = A1 Bia + AgaBas.

Equations (5.54) reduce computing AB to multiplying 8 pairs of (n/2)-by-(n/2) matrices (matrix
addition takes only O(n?) steps, so its contribution to the total running time of the algorithm is
negligible). This means that if we apply formulas (5.54) recursively, then doubling n would increase
the running time of the algorithm approximately by a factor of 8, which means that the running
time is of the order n3. So far, we have not improved on the naive approach that simply uses the
definition of matrix multiplication.
Strassen’s key insight is that to compute Ci1, Cia, Co1, and Chs, one can get away with only

seven multiplications instead of eight. Namely, consider the following matrices:

My = (A1 + A22)(Bi1 + Ba22);

My := (Ag1 + Ag2)Bui;

M3 = A11(Bi2 — B22);

My = Az (Ba1 — Bi1);

M5 = (A11 + A12)Bag;

Mg = (A1 — A11)(B11 + Bi2);

M7 = (A12 — A22)(B21 + Ba2).
Each of My, ..., M7 is computed using a simple matrix multiplication (and a few matrix additions),
and an easy direct calculation shows that

Ci1 = My + My — Ms + My; C12 = M3 + Ms;
021=M2+M4; Cog = M7 — My + M3 + M.

Using these formulas recursively, we obtain an algorithm whose running time increases by a factor
of 7 each time n doubles, and hence the running time is O(n'°827), as desired.
A nice application of fast matrix multiplication is to the following problem:
Given a graph G = (V, E) on n vertices, how quickly can we determine whether it
contains a triangle, i.e., a triple or pairwise adjacent vertices?
A naive approach is to simply check every possible triple of vertices to see whether they form a
triangle. Since there are (g) ~ n3/6 triples to check, this gives an algorithm with running time

O(n?). It turns out that we can do better using matrix multiplication. Denote the vertices of G' by
U1y ..., Up. Let A€ Mywn(Z) be the adjacency matrix of G, i.e., the n-by-n matrix given by

A( ) 1 if Uﬂ}jEE;
1,7) =
J 0 otherwise.
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Compute B := AA = A% Using fast matrix multiplication, this can be done in sub-cubic time (the
precise running time depends on the chosen matrix multiplication algorithm). Notice that

B(i,j) = > A(i,k)A(k,j) = [Na(vi) 0 Na(v))],
k=1

i.e., B(4,7) is the number of common neighbors of v; and v;. Therefore, G' contains a triangle if
and only if there exist some 1 < 4, j < n such that A(7,j) = 1 and B(i,j) > 0, and whether such a
pair (4,7) exists can be determined in time O(n?). Using the fastest known matrix multiplication
algorithm in this procedure leads to the fastest known algorithm for checking whether a graph
contains a triangle.

Extra exercises for Section 5

Exercise 5.55. For a set V, let K (V) denote the graph with vertex set V' in which there is an
edge between every pair of distinct vertices. The graph K (V') is called the complete graph on V.
Similarly, if U, W are disjoint sets, then K (U, W) is the graph with vertex set V := U u W and
edge set {uv : uw e U, v e W}. The graph K(U, W) is called the complete bipartite graph with
bipartition (U, V).

Let G be a graph with edge set . We say that graphs Hy, ..., Hy form an edge decomposition
of GG if the edge sets of Hy, ..., Hy are pairwise disjoint and their union is E. The figure below
shows an edge decomposition of a complete graph on 5 vertices into 4 complete bipartite graphs:

SR T

(a) For every n > 1, show that a complete graph on n vertices admits an edge decomposition
into n — 1 complete bipartite graphs.

The goal of this exercise is to establish the following result:

Theorem 5.56. Let G be a complete graph on n vertices and suppose that Hy, ..., Hj are complete
bipartite graphs forming an edge decomposition of G. Then k = n — 1.

For concreteness, assume that the vertex set of G is {1,...,n}. Suppose, towards a contradiction,
that £ <n — 1. For each 1 < j <k, let (U;, W;) be the bipartition of H;.

(b) Show that for every vector (x1,...,z,) € R",

n n 2 k
Zx? = <2x2> - 22 Z x; Z x; |- (5.57)

i=1 j=1 \ieU; €W

(¢) Prove that there is a nonzero vector (z1,...,z,) € R™ for which the right-hand side of (5.57)
is equal to 0. Hint: Use linear algebra.
(d) Deduce Theorem 5.56.

Exercise 5.58. Let P,,(R) be the R-vector space of all polynomials with real coefficients in a single
variable x of degree at most n. For ¢ € P, (R), let

1
©0(q): Pa(R) > R: p— L p(z)q(z) dz.
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(a) Check that ¢(q) € (P,(R))* and that the function ¢: P,(R) — (P,(R))* is linear.
(b) Show that ker(¢) = {0} and conclude that the function ¢: P,(R) — (P,(R))* is surjective.
(¢) Deduce that for every a € R, there exists a unique polynomial ¢ € P, (R) such that

1
pla) = Jo p(x)q(z) dx for all p € P,(R).

Exercise 5.59. Let K be a field and let F' € K be a subfield of K. (Or, in the terminology of
Exercise 4.28, K is an extension of F.) Suppose that K is finite-dimensional as an F-vector space
and let n := dimp K. Show that there is a set R & M,,«,,(F') of n-by-n matrices over F' such that
K, as a field, is isomorphic to R with matrix addition and multiplication. Hint: For each a € K,
consider the F-linear function p,: K — K given by ¢, (x) = ax for all z € K.

6. EXTERIOR ALGEBRA

6.A. Multilinear functions

Definition 6.1. Let V1, ..., Vi, W be vector spaces over a field F'. A function f: Vi x---xV > W

is k-linear (or multilinear if & is implicit) if for all 1 < ¢ < k and for all v; € V1, ..., v;_1 € V1,
Vi+1 € Vit1, ..., g € Vi, the function
‘/;' - W:v— f(vl,...,vi_l,v,viﬂ,... ,’Uk>

is linear. Informally, f: V} x --- x Vi, = W is k-linear if it is linear separately in each variable.

A function f: V — W is 1-linear if and only if it is linear. A function f: V; x Vo — W is 2-linear
(or bilinear) if the following equations hold for all x1, y1 € Vi, @2, y2 € V5, and a € F":

fx1+y1,22) = f(z1,22) + fy1, 22); f(xr, 22 +y2) = f(o1,22) + f(21,2);

flaz1,22) = f(x1,a22) = af(w1,72).
These equations show that bilinear functions are “multiplication-like”; and indeed, most natural
examples of bilinear functions are various multiplication operations.

Example 6.2. Let F be a field. Then the multiplication operation F'x F' — F': (a,b) — ab is bilinear.
More generally, if V' is an F-vector space, then the scalar multiplication F' x V — V: (a,v) — a - v
is a bilinear function. Generalizing this even further, if n, m, k € N, then the matrix multiplication

Miosem () X Mypxn(F) = Myxn(F): (A, B) — AB
is a bilinear function.
Example 6.3. Let V be an F-vector space. Then the function
VxV*=F:(v,f)— f(v) (6.4)

is bilinear. Note that in the finite-dimensional case, this can be viewed as a special case of the previous
example, since if dim V' = n, then the map (6.4) can be represented by the matrix multiplication

Man(F) X Mnxl(F) — Mlxl(F) ~ F.

Example 6.5. In general, it is fairly easy to write down many bilinear functions that do not have
any special “meaning” attached to them. For instance, any function of the form

F? x F2 - F: ((21,22), (y1,92)) — az1y1 + br1ys + crayr + drays,
where a, b, ¢, d are fixed parameters from F', is bilinear.
The next useful lemma states that a multilinear map is determined by its values on basis vectors:

Lemma 6.6. Let V1, ..., Vi, W be vector spaces over a field F. For each 1 < i < k, let B; < V; be
a basis for V;. Suppose that f,g: Vi x---xV, > W are k-linear functions Such that for all z1 € By,
, T € By, we have f(x1,...,x) = g(ml,...,:pk). Then f = g.
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PROOF. We will give a proof for k = 2, the general case being left as an exercise. Take any v € V
and w € Va. Our goal is to show that f(v,w) = g(v,w). To this end, write

v = a1x1 + - + aply, a, ...,an € F, x1,...,2, € By;

w=b1y1+---+bmym, bl,...,meF, Y1, .-, Ym € Ba.

Then we have

flo,w) = flarxy + -+ + apxp,w)

[since f is linear in the first variable]

I

~
Il
fut

aif(xh w)

a; f(zi, biyi, + - + bimym)

I

-
I
—

=
NgE

[since f is linear in the second variable] = a;b; f(zi,y;)

s
Il
—
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[since f and g agree on the basis vectors] = a;bjg(zi, y;)
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[since g is bilinear] =

Exercise 6.7 (important). Let F' be a field and let A € M« (F) be an m-by-n matrix over F.
Define a function

fa: M1 (F) x Myps1(F) = Mix1(F): (z,y) — xTAy.

Notice that since My, x1(F) = F™, Myx1(F) = F", and Mi41(F) = F, we could think of f4 as a
function from F™ x F™ to F.

(a) Show that for each A € M, «n(F), the function f, is bilinear.
(b) Use Lemma 6.6 to prove that every bilinear function

[+ M1 (F) X Mpx1(F) — Mixi(F)
is equal to fa for some matrix A € M, xn(F).
Example 6.8. For a 2-by-2 matrix A € May2(F'), the function f4 acts as follows:
T (7 _ A(1,1)  A(1,2) Y1
I ([ 2 H v D = Lo { AR AR22) ||
[ A, Dayys + AL, 2)21y2 + A2, Doy + A(2,2) 7212 |-

6.B. Alternating maps

Definition 6.9. Let V and W be F-vector spaces. A k-linear map f: V¥ — W is alternating if
for all 1, ..., xx € V, we have f(z1,...,z;) = 0 whenever the vectors x1, ..., x} are not pairwise
distinct, i.e., when there exist 1 <14 < j < k such that z; = z;.

Example 6.10. The function V¥ — W that sends every tuple (z1,...,z;) to zero is alternating.
(This example illustrates that an alternating function can be zero even if the inputs are distinct.)

Example 6.11. Every linear (i.e., 1-linear) function is, vacuously, alternating (since it accepts only
a single input).
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Example 6.12. Let F be a field and consider the function f: F? x F? — F given by
f((x1,22), (Y1, 92)) = T1y2 — T2y1.
This function is clearly bilinear. Furthermore, it is alternating, since
f((z1,x2), (1,22)) = x129 — 21 = 0.
The name “alternating” is explained by the following lemma:

Lemma 6.13. Let V and W be F-vector spaces and suppose that f: V¥ — W is an alternating
k-linear map. Then for any x1, ..., xx €V and 1 <1i < j <k,

f(xl, . ,xk) = —f(acl, e ,$i_1,xj,xi+1, e ,(L‘j_l, :ci,xjﬂ, . ,l‘k);
in other words, switching any two inputs changes the sign of f.

ProoF. We will give a proof for k = 2, leaving the general case as an exercise. Our goal is to show
that for all z, y e V, f(z,y) = —f(y,z). To that end, consider the value f(z + y,z + y). Since f is
alternating, f(z + y,x +y) = 0. On the other hand,

f($+y,$+y) = f(IE,I‘) Jrf(l‘,y) Jrf(y,l') + f(yay) = f(xay) +f(yax)a
where we used that f(x,z) = f(y,y) = 0. Hence, f(z,y) + f(y,x) = 0, as desired. [

The importance of alternating functions lies in the following fact:

Lemma 6.14. Let V and W be F-vector spaces and let f: V¥ — W be an alternating k-linear

map. Then for all xy, ..., x; € V, we have f(x1,...,xr) = 0 whenever the tuple (x1,...,xy) is not
independent.

PROOF. Suppose z1, ..., xx € V are vectors such that the tuple (x1,...,zx) is not independent.
This means that one of the vectors x1, ..., x; can be expressed as a linear combination of the other

ones (exercise!). For concreteness, assume that xx = ajx1 + - + ag—_12x—1. Then we have
k—1
f(xl, Ce ,$k) = f(a:l, ey Th—1,0Q121 + -+ + ak_1$k_1) = Z aif(azl, ce ,xk_l,mi) = 0. [
i=1
Our goal is to construct multilinear functions for which the converse of Lemma 6.14 holds, i.e.,
such that f(x1,...,2zx) = 0 if and only if the tuple (z1,...,x)) is not independent. Furthermore,
the multilinear functions we construct will be given by iteratively applying a certain associative
binary operation. Without further ado, let us state the main result of this section:

Theorem/Definition 6.15 (Exterior products). Let F' be a field and let V be an F-vector

space of dimension n. Then there exist disjoint F'-vector spaces V1, Vo, ... and an associative binary
operation A on Vi u Vo U ..., called the exterior product (or wedge product) such that:
(EP1) Vi = V.
(EP2) For each k > 1, dimV}, = (Z) In particular, dim V,,, = 0 for all m > n.
(EP3) Ifz € Vj, and y € Vi, then x A y € Viyy.
(EP4) For each k = 1, we have Vj, = Span{z1 A ... A2 : T1,...,25 € V}.
(EP5) For all k, ¢ > 1, the map Vi, x V; — Viyp: (z,y) — = A y is bilinear.
(EP6) The map V xV — Va: (z,y) — x A y Is alternating.
(EP7) For all xy, ..., x € V, the tuple (z1,...,xy) is independent if and only if x1 A ... Az # 0.
(EP8) For every F-vector space W and an alternating k-linear map f: V* — W, there is a unique
linear function ¢: Vi, — W such that for all x1, ..., xx € V, we have
flz1,...,2) = @(x1 A oo A ).

For each k = 1, the space V}, is referred to as the k-th exterior power of V and is denoted by /\lC V.
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6.C. Discussion of Theorem 6.15

For now, let’s take the existence of the structure described in Theorem 6.15 for granted and see
what consequences we can draw from it. We start with two basic remarks:

Remark 6.16. It follows from (EP5) and (EP6) that for each k£ > 1, the map
VE SV (X1, .oy X)) > 1A o A TR
is k-linear and alternating. (Exercise: prove this!)

Remark 6.17. The structure (V1,Va,...; A) is “essentially” unique, meaning that if Wy, Wa, ...
is another sequence of disjoint F-vector spaces equipped with an associative binary operation A
satisfying (EP1)—(EP8), then there exist unique isomorphisms ¢y : Vi, — Wj that send A to A.
(This is why we can refer to the k-th exterior power of V.) Indeed, the function

VE S Wy (T1y .. @) = T1A ... AZg
is k-linear and alternating, so, by (EPS8), there is a unique linear map ¢y : Vi — Wy such that
TIA AT = @p(T1 Ao A Tg).
Similarly, the map
A (T1yeo oy TE) > T A oo AT
is also alternating, so, by (EPS8) applied to A, there is a unique linear map ;. : Wy — Vj, with
Ty Ao AT = Pp(T1A L Axg).
Since, by (EP4),
Vi =Span{x1 A ... Az : z1,...,2, €V} and Wy = Span{ziA ... Az : x1,...,2, € V},
we conclude that the functions o and 1, are inverses of each other, and hence they are isomorphisms.

Let us now consider some low-dimensional examples.

Example 6.18 (The 2-dimensional case). Suppose that V is 2-dimensional; for concreteness,
let V.= Msy1(F). Then dim V5 = (g) = 1, so we can take Vo = I'. Now we need to define a bilinear
function A: V x V — F such that a pair of vectors (z,y) € V x V is independent if and only if
xz Ay # 0. We claim that the following function works:

4| 1
A = — ToU].
[ To ] { Yo ] 1Y2 2Y1

Indeed, with this definition, we have x A y = 0 if and only if x1y2 = zoy1. If y1, yo # 0, then this
means that x1/y; = x2/y2 = ¢, and hence = = cy, so the pair (z,y) is not independent.

Exercise 6.19. Finish this argument (i.e., consider the cases when one or both of y1, y are zero).

Example 6.20 (The 3-dimensional case). Suppose that dim V' = 3; for concreteness, assume
that V' = M3, (F). Now both V5 and V3 are nontrivial, with dim V5 = (g) =3and dim V3 = (g) =1.
Take Vo = M3y 1(F) and V3 = F. We have to define a bilinear function A: V' x V' — V; such that a
pair of vectors (z,y) € V x V is independent if and only if x A y # 0. Here’s the idea: Suppose that
the pair (z,y) is not independent, where

x:[q,’l T xg]T and yz[yl Yo ys]T

Then the following three pairs of vectors in My (F') are also not independent:

(RN B R (e B S R (et B B

It turns out that the converse implication also holds:
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Exercise 6.22. Show that if the three pairs of vectors in (6.21) are not independent, then neither
is the pair (z,y).

Note that we do need all three pairs in (6.21): For instance, if
z=[010]" and y=[0 0 1],
then the pair (z,y) is independent, even though the two pairs
1 Y1 - 0 0 I1 v o 0 0
(SR R (R N (P A R (AR

are not. Combining Exercise 6.22 with Example 6.18, we conclude that the following definition gives
a bilinear function that correctly “detects” independence:

I Y1 T1Y2 — T2Y1
T2 | A | Y2 | = | T1Ys — T3y | - (6.23)
3 Y3 T2Y3 — T3Y2

Now we also have to find bilinear maps A: V x V3 — F and AV, x V — F so that for all z, y,
zeVi(xry) rz=xAr(ynz):=xArynazandxzAnyna z+#0if and only if (z,y, z) is a basis
for V. Tt is not at all obvious how to achieve this (and whether it is even possible) by writing an
explicit formula such as (6.23). In the proof of Theorem 6.15 that we will give, we shall try to
completely avoid such “numerical” expressions and instead construct exterior products “abstractly.”
Nevertheless, after proving Theorem 6.15, we will be able to derive such explicit formulas. Here are
the ones for the 3-dimensional case: If

T T
:1:=[:):1 T xg] eV and u=[u1 U9 ug] € Vs,
then we can set

x1 U

) A U9 = T1U3 — ToU2 + T3Uq and

T3 u3

S S
Uug A X9 = U1T3 — U2T2 + U3T].
u3 3

6.D. Parity of permutations

Let V and W be vector spaces over a field F' and suppose that f: V3 — W is an alternating 3-linear
function. For any z1, x2, x3 € V, there are six ways to plug them into f:

f(SCl,CCQ,lU?,), f(ﬂfl,ﬂfg,l’Q), f(IQ,l‘l,fL‘g), f($275173,$1), f(ﬂfg,l’l,.’EQ), and f(CC3711727I'1).
Using Lemma 6.13, we can express all six of these in terms of f(z1,x2,x3):

f(x1, 22, 23);

f(@1,23,22) = —f(21,22,23);
f(x2,m1,23) = —f(21,22,23);
f(x2,m3,21) = —f(21,23,22) = f(21,72,23);
f(xs, m1,22) = —f(21,23,22) = f(21,72,23);

f(xs, x0,21) = —f(21, 22, 23).

To generalize this to alternating k-linear maps for arbitrary k& > 1, we need a quick review of
permutations and their parity.
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Let X be a finite set. A permutation of (or on) X is a bijection o: X — X. The set of all
permutations of X is denoted by Sym(X) and is called the symmetric group of X. The product of
two permutations o, m € Sym(X) is defined by om := o o 7:

This operation indeed makes Sym(X) into a group: Composition of permutations is clearly associative;
the identity element of Sym(X) is the identity map idx: X — X; and every o € Sym(X) has an
inverse 0! € Sym(X) because o a bijection.

Example 6.24. Let X := {1,2,3} and consider the permutations o, 7 € Sym(X) given by

c : 1-2 23 31
™ : 1—3 22 31
Then o7 is the permutation given by
om : 1—1, 2~3, 32
and o' is given by
o1 1—3, 2—1, 3—2

Definition 6.25. A transposition on a finite set X is a permutation 7 € Sym(X) that interchanges
two elements of X while keeping the rest of the elements fixed. Explicitly, for i, j € X, i # j, the
transposition of i and j is the permutation 7;; € Sym(X) such that

7;5(2) = J, 7i5(3) =1, and 7ij(x) = x for all x ¢ {7, j}.
The key to understanding exterior products lies in the following basic combinatorial fact, which
we will leave as an exercise (it is usually covered in most abstract algebra courses):
Exercise 6.26 (important). Let X be a finite set and let o € Sym(X) be a permutation. Prove the
following statements.
(a) There is a finite sequence of transpositions 71, ..., 7, such that o = 71 - - 7.
(b) I 71, ..., Tk, p1, -- -, p¢ are transpositions such that
O =T1""Tg = P1°"P¢,
then k = ¢ (mod 2).
Example 6.27. Let X := {1,2,3,4,5} and suppose that o € Sym(X) is given by
c : 1—2 23 3—1, 4—5 54

then o = Ti3712745 = TosT34T13T15714 (exercise!), i.e., o can be expressed as a product of 3 or 5
transpositions. However, in accordance with Exercise 6.26, it is impossible to write ¢ as a product
of 4, 6, or any other even number of transpositions.

Definition 6.28. Let X be a finite set and let 0 € Sym(X). Write o as a product of transpositions:

o = 71--- 7. Then the sign of ¢ is sign(c) := (—=1)¥. (The sign of o is well-defined since it only

depends on the parity of k.) If sign(o) = 1, then we say that o is even; otherwise, o is odd.
Exercise 6.29. Show that for any o, 7 € Sym(X), we have sign(om) = sign(o)sign(mw).
Exercise 6.30. Show that for any o € Sym(X), sign(c~!) = sign(o).
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Exercise 6.31. Show that if X is a finite set of size at least 2, then the number of even permutations
in Sym(X) is equal to the number of odd permutations in Sym(X). Hint: Take any transposition
7 € Sym(X) and consider the map Sym(X) — Sym(X): o — 70.

The following statement is an immediate consequence of Lemma 6.13 that generalizes the discussion
from the beginning of this subsection:

Exercise 6.32. Let V and W be F-vector spaces and suppose that f: V¥ — W is an alternating
k-linear map. Show that for any xj, ..., zx € V and o € Sym({1,...,k}),

f(Zo(1), - Tor)) = sign(o) - f(@1,..., 7).

From Exercise 6.32 and assuming the existence of exterior products (which we haven’t proved
yet), we can derive a useful corollary that will guide our construction of exterior powers:

Corollary 6.33. Let F' be a field and let V' be an F-vector space of dimension n. Pick a basis
{e1,...,en} for V. Then the set {e;; n...Ae;, 1 1<i; <---<ip<n}isa basis for N" V.

PROOF. By (EP4), A"V = Span({z1 A ... Az : @1,..., 21 € V}). Consider any element of the
form 21 A ... A zk. Since {e1,...,e,} is a basis for V, we can express each of z1, ..., xy as a linear
combination of ey, ..., e,. If we replace the vectors x1, ..., xp in 1 A ... A xp by these linear
combinations and expand use the bilinearity of A, we obtain that

z1 A ... Az € Span({e;, A ..o A€, @ 1 <idy,..., i < n}).

Now consider an expression of the form e;; A ... A e;,. If the indices iy, ..., i, are not distinct, then
€, A ... A e, = 0. If on the other hand, they are distinct, then, by Exercise 6.32, e;; A ... A ¢€;, is
equal to plus or minus one times the wedge product of e;,, ..., e;, taken in the increasing order of
indices. This shows that the set

{ei, nooone t1<ip <o < <n}
spans /\k V. Since the size of this set is equal to (}) = dim /\k V', it must be a basis. [
Example 6.34. Let V = M341(R) and let
ei=[100], e=[010], ad e=[00 1]

be the standard basis vectors for V. Let’s use this basis to compute

1 1 0
LAl O Al 1| =(e1+e2)n(er+e3)A(e2+e3).
0 1 1
We have
(e1 +e2) A(e1+e3) =ep Aner+elAes+exnel +exAes
= e1 ANe3z— €] Aey+ea A es.
Therefore,

(e1 +e2) A(e1+e3) A(ea+e3) = (e1 Aeg—ep Aex+ea Aes) A (e +e3)
= ejAN€e3N€Er—€el Ay Aeg = —2e] A ex A es.

The significance of the coefficient —2 will be explained in the next subsection.
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6.E. Determinants
Let V be an n-dimensional vector space over a field F' and let ¢: V' — V be a linear function.
Consider the map V" — A"V given by
(:Cla . '7'%'%) — 90(331) AERIA So(xn)

This map is n-linear and alternating (exercise!), so, by (EP8), there is a unique linear function
[+ A"V = A"V such that p(z1) A ... A @(xn) = f(z1 A ... A xy). Since dim A"V = () =1,
the only linear functions from A"V to itself are of the form v — a - v for a fixed a € F; therefore
there exists a unique element of F', called the determinant of ¢ and denoted by det(y), such that

o(x1) Ao A () = det(p) -1 Ao A e

If Ae Myxn(F), then A represents a linear map My x1(F) — M,x1(F): z — Az, and we denote
the determinant of this map by det(A) and call it the determinant of A. Note that if {e;,...,e,}
is the standard basis for M, «1(F"), then, by definition,

Aer A ... A Aey = det(A) -eg A ... A e,
and thus calculating det(A) is tantamount to computing the wedge product of the columns of A.

Example 6.35. Recall from Example 6.34 that

1 1 0
1 | A] 0| A1 = —2e1 A €ea A e3.
0 1 1

This means that, by definition,
1 10
det| 1 0 1 | = -2
011

Notice that our definition of the determinant is coordinate-free: We don’t need to pick a basis
for V in order to determine det(y) for ¢: V — V. However, by generalizing the calculation from
Example 6.34, it is possible to obtain an explicit numerical expression for the determinant:

Theorem 6.36 (Leibniz formula). Let F' be a field and let A € My« (F). Then

n
det(4) = ) sign(o) [ [ A(i, 0(i)), (6.37)
o i=1
where the summation is over all o € Sym({1,...,n}).
PROOF SKETCH. Let {ey1,...,e,} be the standard basis for M,,»1(F). Then the exterior product

of the columns of A can be written as
Aey A ..o nAep, =(A(L,1)er + A(2,1)ea + -+ 4+ A(n, 1)ey)
AA(L,2)er + A(2,2)ea + - - + A(n, 2)ey,)

A

AA(L,n)er + A(2,n)ea + -+ - + A(n,n)ey).
Expanding this product (using that A is bilinear and alternating) gives (6.37). n
Exercise 6.38. Fill in the details in the proof of Theorem 6.36.
Exercise 6.39. Use Theorem 6.36 to show that for all A € M, (F), det(AT) = det(A).
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Example 6.40. There are precisely two permutations of the set {1,2}, namely (1 — 1, 2 — 2) and
(1~ 2,2 1). The first of these permutations (the identity) is even, while the second one is odd.
Therefore, by the Leibniz formula, the determinant of a 2-by-2 matrix A is

det(A) = A(1,1)A(2,2) — A(1,2)A(2,1).
Similarly, there are six permutations of the set {1, 2,3}, three of which are even and three odd, and
the determinant of a 3-by-3 matrix A is
det(A) =A(1,1)A(2,2)A(3,3) — A(1,1)A(2,3)A(3,2) — A(1,2)A(2,1)A(3,3)
+ A(1,2)A(2,3)A(3,1) + A(1,3)A(2,1)A(3,2) — A(1,3)A(2,2)A(3,1).
In principle, the Leibniz formula could be used to define the determinant of a matrix. However,

our “coordinate-free” definition, which is more abstract, has some significant advantages, as it allows
us to derive several useful properties of determinants almost effortlessly.

Theorem 6.41. Let V be an n-dimensional vector space over a field F' and let p: V — V be a
linear function. Then ¢ is bijective if and only if det(p) # 0.

PROOF. Let {e1,...,e,} be a basis for V. Then the function ¢ is bijective if and only if the set
{ele1),...,p(en)} is a basis for V, i.e., if the tuple (¢(e1),...,¢(e,)) is independent. By (EP7),
this is equivalent to p(e1) A ... A p(en) # 0. But p(e1) A ... A @(e,) = det(p) -e1 A ... A e, by
definition, and so p(e1) A ... A p(e,) # 0 if and only if det(yp) # 0, as desired. [ ]

Lemma 6.42. Let V be an n-dimensional vector space over a field F' and let ¢, ¢: V — V be
linear functions. Then det(p o 1) = det(y)det(y)). Hence, if A, B € My, (F') are n-by-n matrices
over F', then det(AB) = det(A) det(B).

PROOF. Let z1, ..., x, € V and let y; := ¢(x;) for each 1 < i < n. We have

(po)(zr) Ao n(wo)(zn) =@((z1)) Ao A @(P(2n))
=) Ao A e(yn)
=det(p) Y1 A ... AYn
= det(p) - Y(z1) A ... AY(xy)
= det(p)det(v) -1 A ... A Ty,
as desired. |

Our next result is an extension of Lemma 6.42 to non-square matrices. Before we state it, let us
fix some notation. For n € N, let [n] := {1,...,n}. For a set X and k € N, let P;(X) be the set of
all k-element subsets of X. Notice that

n
Pl = (}):

For an m-by-n matrix A and a pair of subsets S < [m], T' < [n], let Agr be the matrix obtained
from A by only keeping the entries in the rows whose indices are in S and the columns whose indices
are in T'; more formally, if S = {s1,...,sx} and T' = {t1,...,ts}, where

S < - < Sk and tp < - <ty
then Ag 7 is the k-by-f matrix such that
Ag (i, j) == A(si, t)) for all i € [k] and j € [/].

For instance,

if A= ?

1
0

S W=
)
O = W
— Ot

and S ={1,3}, T ={1,2,4}, then Agr = [

)
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Theorem 6.43 (Binet—Cauchy formula). Let F' be a field and let m, n be positive integers
with m = n. Then, for all A € Myxm(F) and B € My, xn(F), we have

det(AB) = > det(Ap,5) det(Bg ). (6.44)
SeP([m])

Example 6.45. Working over R, consider the matrices
11
A= [ (1] ? ‘i) } and B=1| 2 2
3 4

Then
14 17
5 6

On the other hand, the right-hand side of (6.44) is
det(Apg),q1,2)) det(Byi 2y [21) + det(Ag) ¢1,3)) det(Byy 3y 12]) + det(A[),12,33) det(Bya,ay12])
1 2 1 1 1 3 1 1 2 3 2 2
=det{0 1 }det[ 9 2}+det[ 0 1 ]det[ 3 4]+det{ 11 ]det{ 3 4}
—(1-1-0:2)-(1:2—=2-1)+(1-1-0:3)-(1-4—3-1)+(2-1—-1-3)-(2-4—-3-2)
=1-0+1-14(-1)-2=0+1-2 = —1,

det(AB)zdet[ ]214-6—5-17:—1.

in agreement with Theorem 6.43.

To establish Theorem 6.43, we will need two lemmas that are also interesting and useful in their

own right. Let V' be an n-dimensional vector space over a field F' and let {eq,...,e,} be a basis for
V. For a set S = {s1,...,s;} € [n], where s1 < --- < sp, write
esi=e€s A ... N e€s,. (6.46)

By Corollary 6.33, the set {eg : S € Pi([n])} is a basis for A" V.

Lemma 6.47. Let F' be a field and let m, n be positive integers withm > n. Set V := M1 (F) and
W = Mpx1(F). Let {e1,...,en} and {f1,..., fm} be the standard bases for V" and W, respectively.
Let A€ My xm(F) and let pa: \"W — A"V be the unique linear function such that

Ay A oo AN Ay = AU A A Yn) forally1, ..., ypo € W.
(Such a function ¢ 4 exists due to (EP8).) Then, for all S € P, ([m]), we have
wal(fs) = det(A[n]’S) “e1 A ... A €Ep.

PROOF. The proof of this lemma is shorter than its statement. Take any S € P, ([m]) and let the
elements of S be s; <--- <s,. Then fg = fs, A... A fs,, 50

palfs) = oalfs noo A fs)) = Afsy Ao A Afs,
But the vectors Afs,, ..., Afs, € V are precisely the columns of A[,) ¢, and hence
Afsy Ao N Afs, = det(Aps) -e1 Ao Aen,
as desired. |

Lemma 6.48. Let F be a field and let m, n be positive integers withm > n. Set V' := My x1(F) and
W = Mpx1(F). Let {e1,...,en} and {f1,..., fm} be the standard bases for V" and W, respectively.
Let B € Myxn(F) and let op: \"V — A" W be the unique linear function such that

Bxy A...ABxy = op(x1 Ao A Ty) for all x1, ..., xp € V.
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(Such a function ¢p exists due to (EPS8).) Then we have
(,03(61 Ao A en) = Z det(BS,[n]) - fs.
SePn([m])

Exercise 6.49. Prove Lemma 6.48.

PROOF OF THEOREM 6.43. Set V = M, 1 (F) and W = M,,«1(F), and let {ei,...,e,} and
{f1,..., fm} be the standard bases for V' and W, respectively. Also, let o4: A"W — A"V and
ep: N\"V — A" W be as in Lemmas 6.47 and 6.48. For each 1 < i < n, let y; :== Be; be the i-th
column of B. Then we have

ABei A ...AABep = Ayt A oo A AYn =0A(Y1 A oo A Yn)
=pa(Beir A...ABey) = palepler A ... Aep)).

Now, using Lemma 6.48 and the linearity of ¢4, we obtain

palppler A ... Aen)) = pa D det(Bspnp) - fs | = DL det(Bgpny) - palfs).
SePr([m]) SePn([m])

Finally, by Lemma 6.47,

Y det(Bgp) - ealfs) = > det(Bg ) det(Apys) e A ... A en,
SeP,([m]) SePn([m])

as desired. |
Exercise 6.50. Let A € M,,x,(R). Show that det(AT A) = 0.

Exercise 6.51 (Cramer’s rule). Let F' be a field and let A € M, «,(F) be a matrix with
det(A) # 0. Fix some y € My, «1(F). Let the columns of A be ay, ..., a,. For each 1 <1i < n, let
A; be the matrix obtained from A by replacing its i-th column by y; i.e.,

Alzz[y as o G ], Ag:z[al Yy oo ap ], e An::[al as - y].
Show that the unique vector z € M,,x1(F') such that Az = y is given by
det(Al)
1 det(As)
T det(A)
det(A,)

6.F. Proof of Theorem 6.15

The method of “postulating” what we want has many advantages; they are
the same as the advantages of theft over honest toil.

Bertrand Russell

Now it’s finally time to construct exterior products. Let V' be an n-dimensional vector space over
a field F' and let {ej,...,e,} be a basis for V. We already know (from Corollary 6.33) that the
exterior power A"V must have a basis of the form {eg : S € Pj([n])}. Here’s the idea: We will let
Vi be some (any!) vector space of the right dimension, pick an arbitrary basis in V}, and simply
label the elements of this basis by the sets S € Px([n]). Then we will define the exterior product so
that it has all the required properties.
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So, let V4 :=V and for each k > 2, let V}, be an arbitrary F-vector space of dimension (Z) Pick
a basis By, for V. Since dim V,, = (Z), By, has (Z) elements, so we can index them by the k-element
subsets of [n] (of which there are exactly (})) and let

By = {es : e Py([n])}.
Again, “eg” here is just an arbitrary name for a vector in V. But these names inform our construction,
as our plan is to define an operation A that makes equation (6.46) true. For convenience, we also
let eg;) = e; to make the set {es : S € Pi([n])} = {eg;y : i € [n]} a basis for V} = V.

Now we need to define A. First, we define it on the basis vectors: For all @ # S, T < [n], set

0eVie  ifSAT#o;

es A er = 6.52
S { sign(S,T)esor if ST =0, (6.52)

where sign(S,T) is either 1 or —1 and is determined as follows: Let S = {s1,...,sx} and T =
{t1,...,ty} with s <--- < sg and t; <--- < ty. Then sign(S,T") is (—1) to the power of a number
of transpositions needed to put the sequence (s1,..., Sk, t1,...,t7) in increasing order.

Remark 6.53. The value sign(S,T) is well-defined, as it only depends on the parity of the number
of transpositions that put the sequence (si,..., sk, t1,...,t¢) in increasing order. (See Exercise 6.26
and Definition 6.28.)

Remark 6.54. Formula (6.52) is the only way to define A that is consistent with (6.46) (think why!).
For example, if S = {1,3} and T" = {2, 3}, then we should end up having eg ner = e; Aegnea Aes = 0,
as reflected in (6.52). Similarly, if S = {1,3} and T = {2,4}, then sign(S,T) = —1 (because the
sequence (1,3,2,4) can be put in increasing order by a single transposition), and we should get
es Aer =e1 Ae3Aey ey =—e AesAesA ey, which is again what (6.52) ensures.

Notice that if |S| = k and |T'| = ¢, then eg A ep € Viyp (as desired). Since A should be bilinear,
there is a unique way to extend (6.52) to arbitrary vectors. Namely, for all z € Vi, and y € Vp, we
define z A y € Vi1 as follows: Write z and y in terms of the corresponding bases:

T = Z aseg and Yy = Z brer.
SePy([n]) TeP,([n])
Then
TAY = Z Z agbr - (es A er).
5€Pr([n]) TePe([n])
That’s it! Notice that we had essentially no “freedom” in this construction: the definitions were

“forced” on us by the requirements of Theorem 6.15. What’s left to do now is to verify that the
structure obtained in this manner actually satisfies all the claims made in Theorem 6.15.

6.F.1. The operation A is associative.—This is the most subtle part of the argument. Since A
is defined to be bilinear, it is enough to check associativity on the basis vectors (exercise!). So,
take S = {s1,..., sk}, T ={t1,...,t¢},and R = {ry,...,rp} with s1 <--- < s, t; < --- <y, and
r1 < --- < Tm, and consider the expressions
(es Aer) A er and es A (er A eg).
If the sets S, T', R are not pairwise disjoint, then both of these expressions are equal to 0. Otherwise,
both of them are equal to plus or minus eg 7, r. Furthermore, the coefficient in front of eg_r R is
equal to (—1) to the power of a number of transpositions that put the sequence
(S1yeney SkytlyevsbgyTlyeeesTm)

in increasing order (exercise!). Therefore, (eg A er) A egr = eg A (er A eRr), as desired.

6.F.2. Properties (EP1), (EP2), (EP3), and (EP5).—These properties are satisfied by construction.
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6.F.3. Property (EP4): We have Vi, = Span{z1 A ... A x} : x1,...,2, € V}.—This holds since the
space Vj is spanned by the elements eg, S € P([n]), and A is defined so that we have

€5 = €5, A ... A €s,
where S = {s1,...,sx} and 51 < -+ < sp.

6.F.4. Property (EP6): The map V xV — Va: (z,y) — = A y is alternating.—Take any x € V' and

write it as x = Y | a;e; with ay, ..., a, € F. Then, by definition,
n n
TAT = Z Z a;a;(e; A €j).
i=1j=1
Note that
0 ifi=j;
€ Nej = e{i,j} ifi < j;
Hence,
TAT = Z (aiaj — ajai)e{i’j} = 0,
1<i<j<sn
as claimed.

6.F.5. Property (EP7): A tuple (x1,...,x%) € V¥ is independent if and only if &1 A ... A ) # 0.—

We already know from Lemma 6.14 that if (z1,...,xx) is not independent, then z1 A ... A xp = 0.
Now suppose that the tuple (z1,...,xy) is independent. Then we can extend it to an ordered basis
(1,...,2n), and it suffices to show that

TIA ATy = (T Ao AZE) A (Tl A ooo Ap) # 0.

Since (x1,...,x,) is a basis, we can express each of ey, ..., e, as a linear combination of z1, ...,
. Plugging these linear combinations into e; A ... A e and expanding, we obtain that

er A ... AnegESpan({zi, A ... Amy, 2 1 <idy,... 0, < n}).
An expression of the form x;, A ... A x;, can only be nonzero if the indices iy, ..., i, are pairwise
distinct, in which case z;; A ... A x;, is equal to either plus or minus z; A ... A z,. Therefore,

€1 A ... A ey, is a scalar multiple of 1 A ... A z,. Since e; A ... A e, = €[n] # 0 by definition, we
conclude that z1 A ... A 2, # 0 as well, as claimed.

6.F.6. Property (EPS8): For every alternating k-linear map f: V¥ — W, there is a unique linear
function @: Vi, > W such that we have f(x1,...,x5) = o(x1 A ... A xp).—Since {eg : S € Pr([n])}

is a basis for Vi, there is a unique linear function ¢: Vi, — W such that p(es) = f(es,, ..., e€s,) for
all S = {s1,..., s} with 51 <--- < sx. We claim that this function also satisfies p(x1 A ... A xg) =
flxy,...,xg) for all 21, ..., xx € V. Indeed, consider the map

g:VE S W (2, x) — @z AL A T).
It is clear that g is k-linear and alternating, and, by definition,
glesyy. . es.) = flesyy---s€s) whenever 1 < s1 < -+ < 5, < n. (6.55)

Since both f and g are alternating, (6.55) implies that f and g must agree on arbitrary sequences
of basis vectors. Hence, f = g by Lemma 6.6.

The proof of Theorem 6.15 is complete.
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6.G. Quantifier elimination

Suppose that A € M, «n(F). By definition, the columns of A are independent if and only if
for all x € Myy1(F), if © # 0, then Az # 0.
Notice that this definition starts with a universal quantifier: Some property must hold for every

single vector in the (possibly infinite) space My, x1(F'). We also know (exercise!) that this property
can be stated equivalently as follows:

there exists a matric B € My, xm(F) such that BA = I,(F).

This reformulation starts with an existential quantifier that is asking us to find a matrix with certain
properties in the (possibly infinite) space M,y (F'). When n = m (i.e., the matrix A is square),
there is a third formulation:

det(A) # 0,
which is quantifier-free: To verify it, we simply need to perform a direct computation that only

involves the entries of A. Exterior products provide a similar quantifier free characterization of
linear independence in the general case (i.e., when n and m may differ):

Theorem 6.56. Let F' be a field and let A € M,,x,(F). Then the columns of A are independent if
and only if there is a set S € Py, ([m]) such that det(Ag[,)) # 0.

Example 6.57. We've already encountered a special case of this with n = 2, m = 3 in Exercise 6.22.

PROOF. Set V :i= My x1(F) and W := M, «1(F). Let {eq,...,e,}and {f1,..., fin} be the standard
bases for V and W, respectively. The columns of A are independent if and only if their exterior
product is nonzero, i.e., if Ae; A ... A Ae, # 0. By Lemma 6.48,

Aer A ... A Aey = Z det(Agn)) - fs-
SePn([m])

Since {fs : S € Pn([m])} is a basis for A" W, the last expression is nonzero if and only if at least
one of the coefficients is nonzero, i.e., when det(Ag ) # 0 for some S € P,([m]), as desired. W

Corollary 6.58 (Rank in terms of determinants). Let F' be a field and let A € M, xn(F).
Then rank(A) is equal to the largest integer k such that there exist k-element subsets S < [m] and
T < [n] with det(Agr) # 0.

Exercise 6.59. Prove Corollary 6.58.
Remark 6.60. Notice that Corollary 6.58 provides another proof that rank(A) = rank(AT).

As an application of Theorem 6.56, we shall establish a connection between linear independence
over Q and over [F,, for a prime p. As a motivating example, consider the three vectors

0 2 1
x =4[, y=101, z =12 € Msx1(Z).
2 1 0

The triple (x,y, z) is independent over Q. However, since the entries of z, y, and z are integers, we
can reduce them modulo a prime p and inquire whether the resulting vectors in M3y (F,) are also
independent over F,. When p = 2, we have z = 0 (mod 2), and thus the triple (z,y, z) loses its
independence in Fy. Similarly,

3
r+y+z= 1|6 | =0 (mod3),
3

which means that the triple (z,y, 2) is not independent over F3. Yet, it is independent in [F,, for all
primes p = 5:
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Exercise 6.61. Show that the triple (x,y, z) is independent modulo p for all primes p > 5.

Our question is, what happens in general? In other words, given vectors x1, ..., zx € Myx1(Z)
such that the tuple (x1,...,zx) is independent over Q, what can be said about the independence of
(x1,...,z) modulo a prime p? From the above example, we know that there can be finitely many
primes over which the tuple (z1,...,xy) loses its independence. It turns out that the can be only
finitely many such “bad” primes:

Theorem 6.62. Let x4, ..., xx € M, «1(Z). The following statements are equivalent:

(1) the tuple (x1,...,xx) is independent over Q;
2) the tuple (x4, ...,xy) is independent over IF,, for some prime p;
p P P p p
3) the tuple (x1,...,x) is independent over F,, for all but finitely many primes p.
p

PROOF. (2) = (1). We will prove the contrapositive of this implication. Suppose that the tuple

(x1,...,2k) is not independent over Q. This means that there exist rational numbers aq, ..., a; € Q,
not all of which are zero, such that ayx1 + - - - + arxy = 0. After clearing the denominators, we may
assume that aj, ..., ai are actually integers. Furthermore, we may assume that ged(ay,...,a;) = 1,
since otherwise we can simply replace each a; with a;/ged(ay, ..., ar). With these assumptions, we
see that for all primes p, at least one of ay, ..., a; is nonzero modulo p, while a1z1 + - -+ apzp =0
(mod p), showing that (z1,..., ) is not independent over [,

(3) = (2). This implication is trivial.

(1) = (3). This is the interesting (and somewhat surprising) part of the theorem, and this is
where Theorem 6.56 comes in handy. Let A be the n-by-k matrix whose columns are x1, ..., zp
and suppose that the tuple (z1,...,z) is independent over Q. By Theorem 6.56, this means that
there is a set S € Pg([n]) with det(Agx)) # 0. Since det(Agz)) is a nonzero integer, there are only
finitely many primes p that divide it, and for all other p, det(Ag ) # 0 (mod p), implying, by
Theorem 6.56 again, that the columns of A are independent in I, as desired. |

In the above proof of (1) = (3) we tacitly relied on the result of the following exercise:

Exercise 6.63. Let A € M,,«(Z) and let p be a prime number. Let A’ € M,,+,,(Fp) be the matrix
obtained by reducing each entry of A modulo p. Show that det(A) = det(A’) (mod p).

6.H. A combinatorial application: the skew set pairs inequality

In this subsection, we shall establish the following combinatorial fact, which, at first glance, has
little to do with linear algebra (althou it is somewhat reminiscent of Theorem 1.39):

Theorem 6.64 (Skew set pairs inequality; Frankl-Lovasz). Suppose that Ai, ..., A, are
k-element sets and B, ..., B, are {-element sets such that:

e A;,nB; =@ foralll <1i<n;and

e AinBj#@ foralll <i<j<n.

Then n < (kzz).
A few remarks are in order. First, note that in the statement of Theorem 6.64, there are no

assumption on the size of the ground set | J;_; (4; U B;); in other words, the same upper bound on
n is valid regardless of the total number of elements that the sets in the theorem are allowed to

contain. Second, the upper bound n < (k','f) is best possible. To see this, let
Al, ey A(kzi)

be all the k-element subsets of [k + ¢] and set B; := [k + ¢]\A;. Third, notice that there is some
asymmetry in how the A;s and the B;s are treated. Specifically, we are only requiring the intersection
A; n Bj to be nonempty when 7 < j, while nothing is said about the case j < i. This is why
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Theorem 6.64 is referred to as the skew set pairs inequality. The non-skew version, in which
A; n Bj # @ whenever i # j, was proved earlier by Bollobas with a clever combinatorial argument.
However, for the skew version, only algebraic proofs are known!

PRrRoOOF. Without loss of generality, we may assume that all the sets Ay, ..., A,, B1, ..., By are
subsets of [N] for some N € N. Using Exercise 5.51, we get a sequence of vectors 1, ..., xy € RF+

such that every (k + ¢) of them are independent. To each A; we associate an element z 4, € /\k RF+¢
given by the formula

TA, = Tay A .. A g, where A; = {a1,...,ar} with a1 < -+ < ay.
Similarly, let 25, € A*R¥* be given by
TR, =Ty, A ... A Tp,, where B; = {b1,...,bs} with by < --- < by.

If1<i<j<mn,then A;n B; # &, and so x4, A xzp, = 0. On the other hand, z4, A zp, is the
wedge product of (k + ¢) distinct elements of the sequence x1, ..., xy, and therefore z4, A xp, # 0.
The crux of the argument is in the following observation:

Claim. The tuple (x4,,...,24,) Is independent.

Proof. Suppose not. Then we have >, | ¢;z4, = 0 for some coefficients ¢y, ..., ¢, € R, not all of
which are zero. Let j be the largest index such that ¢; # 0. Then

J J
0= (Z CZ'CL‘AZ,> AZp, = Zci(a:Ai Axp;) = cj(za; AxB;) # 0.

i=1 i=1
This contradiction completes the proof of the claim. -
From the above claim, we conclude that n < dim /\k RF+E = (k;rz), as desired. |

Extra exercises for Section 6

Exercise 6.65. Let V' be a finite-dimensional vector space over a field F' and let Alty (V') be the
set of all alternating k-linear maps f: V¥ — F. Show that Alty(V), viewed as an F-vector space, is
isomorphic to A" V.

Exercise 6.66 (important). Let V' be a finite-dimensional vector space over a field F' and let vy,

.oy Vg, Wi, ..., Wk € V. Suppose that the tuples (vy,...,v) and (wy,...,wy) are independent.
Show that Span({vi,...,v;}) = Span({wi, ..., wx}) if and only if v1 A ... A vi is a nonzero scalar
multiple of w1 A ... A wy.

7. POLYNOMIALS
7.A. Basic properties of polynomials

Polynomials play an extremely important role in algebra in general and in linear algebra in particular.

Example 7.1. If we consider the entries of an n-by-n matrix A as variables, the determinant det(A)
becomes a (multivariate) polynomial. For instance,

1 T
det { Lo } = X1T4 — ToX3.
T2 T4

Even though we have already encountered polynomials on a few occasions in these notes, it
will do us good to briefly review the definition of a polynomial. Let R be a commutative ring. A
polynomial over R in a single variable x is an expression of the form

ap + a1z + asx® + - + apa™, (7.2)
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where n € N and ay, ..., a, € R. To be more precise, an expression such as (7.2) is a shortcut that
stands for

ap + a1x + agx® + - -+ + apaz™ + 02" 4 02" 4 - (the sum is infinite).
Thus, for example, 1+ z and 1 4 x + 022 are two expressions for the same polynomial. If we wanted
to be completely formal, we could say that a one-variable polynomial over R is simply an element of
the set [N — R]<%, i.e., a sequence (ag, a1, az,...) € RY with only finitely many nonzero entries.

The set of all polynomials over R in a variable x is denoted by R[z]. Each polynomial p € R[x]
gives rise to a function R — R obtained by evaluating p in the usual way; that is, if

p = ap+ax + ax® + - + apz”,
then for each c € R, we set
p(c) = ag + aic+ azc® + - + apc”,

where addition and multiplication are interpreted as the corresponding operations in R, and we
use the standard abbreviation ¢* := ¢ - ¢---c¢ (k factors). Crucially, two polynomials are considered
equal when they have the same coefficients, and so two distinct polynomials may give rise to the
same function. For example, consider the following two polynomials in F3[x]:

p=ad+x+1 and q:=2x+1.

We then have

0*+0+1=2-0+1=1 (mod 3),

P+141=2-1+1=0 (mod 3),

224241=2-2+1=2 (mod 3),
so p(c) = q(c) for all ¢ € F3, and yet p # q as polynomials. Nevertheless, we will soon see that if
the ring R is infinite, then any two polynomials that give rise to the same function must, in fact,
coincide as polynomials (see Exercises 7.11 and 7.12).

If p is a polynomial in a variable z, then we write [mk]p to indicate the coefficient of p corresponding
to the monomial z¥; in other words,

[a:k](ao + a1z + agx® + -+ anz") = ag.

Polynomials can be added and multiplied together, which makes R[x] into a commutative ring in
its own right. Some care has to be taken when defining addition and multiplication of polynomials,
since, as explained above, polynomials cannot, in general, be identified with their corresponding
functions. This means that, given a pair of polynomials p, ¢ € R[z], we have to be able to describe
the coefficients of p + q and pq in terms of the coefficients of p and ¢. This can be done as follows:
k
[2F1(p+q) = [2*]p+ [2*]g  and  [2*](pg) == D ([2"]p)([z*"]q).
i=0

Exercise 7.3. Let R be a commutative ring and let p, ¢ € R[x] be two polynomials. Show that for
all ce R, (p+ q)(c) = p(c) + q(c) and (pq)(c) = p(c) - g(c). Explain why the latter equality might
fail if the ring R is not assumed to be commutative.

Exercise 7.4. Let R be a commutative ring. Show that R[z] is also a commutative ring.
Exercise 7.5. Let F' be a field. Show that F[z] is a vector space over F.

The degree of a nonzero polynomial p € R[x]|, denoted by degp, is the largest k € N such that
[2*]p # 0. By definition, deg 0 := —co. The set of all polynomials over R in a variable  of degree at
most n is denoted by P,(R). If F' is a field, then P,(F) is a subspace of F'[x] of dimension n + 1.

Exercise 7.6. Let R be a commutative ring and let p, ¢ € R[x]. Show that deg(pq) = degp + degq.

Exercise 7.7 (important). Give a definition of the ring of multivariate polynomials R[x1, ..., zx].
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7.B. Polynomial division

Let F be a field. We say that a polynomial g € F[x] divides another polynomial p € F[z] if there is
a polynomial f € F[z] such that p = fq. If ¢ divides p, then we call ¢ a divisor of p. Notice that if
p # 0, then the degree of every divisor of p is at most degp. A polynomial p is irreducible if all its
divisors ¢ satisfy degq = 0 or deg g = degp.

Lemma 7.8 (Polynomial division with remainder). Let F be a field and let p, q € F[x]. If
q # 0, then there exist unique polynomials f (the quotient) and r (the remainder) such that

degr < deggq and p=fq+r.

ProoF. Call a polynomial h € F[z] a potential remainder if there is f € F[x] with p = fq + h.
Note that p itself is a potential remainder since p = 0- ¢ + p. Let r be a potential remainder of the
smallest degree. We claim that then degr < degq, proving the existence part of the lemma. Indeed,
since r is a potential remainder, there is f € F[x] with p = fq + r, so we only need to show that
degr < degq. Suppose, towards a contradiction, that degr > degq. Let

a = [z9%€9]q and b= [z,
and consider the polynomial 7’ := r — (b/a)zd°8"~4¢¢ 44 By construction, degr’ < degr; but
p = fa+r = (f+b/a)zE"IEY)g 4,
so r’ is a potential remainder, which contradicts our choice of r. For the uniqueness part, suppose

that p = fiqg + r1 = faq + 72, where degry, degry < degq. Then (f1 — f2)g = r1 — r2, and hence ¢
is a divisor of 71 — ro. Since degq > deg(r1 — r2), this is only possible is r; —ro = 0, as desired. W

A root of a polynomial p € F[z] is any element ¢ € F such that p(c) = 0. The following properties
of roots follow easily from Lemma 7.8:

Exercise 7.9. Let F be a field and let p € F[z]. Show that if ¢ € F is a root of p, then the
polynomial x — ¢ is a divisor of p.

Exercise 7.10 (Baby Bézout’s theorem). Let F be a field and let p € F[x] be a nonzero
polynomial. Show that p can have at most degp distinct roots.

Exercise 7.11. Suppose that F' is an infinite field and p, ¢ € F[z] are polynomials such that
p(c) = q(c) for all ¢ € F. Show that p = ¢ as polynomials.

Exercise 7.12. Suppose that R is an infinite commutative ring (but not necessarily a field) and
let p, ¢ € R[z] be polynomials such that p(c) = ¢(c) for all ¢ € R. Show that p = ¢ as polynomials.
Hint: Make sure that the conclusion of Lemma 7.8 holds over R when ¢ = x — ¢ for some c € R.

Let p, ¢ € F[z]. A polynomial s € F[z] is a greatest common divisor (or a ged) of p and ¢ if s
divides both p and ¢, and whenever ¢ € F[z] divides both p and ¢, t also divides s.

Exercise 7.13. Show that if s; and s2 are geds of p, ¢ € F/[z], then s; = asa for some a € F\{0}.
The following result is one of the most fundamental properties of polynomials over a field:

Theorem 7.14 (Euclidean algorithm for polynomials). Let F' be a field and let p, q € F[x].
If at least one of p and q is nonzero, then p and q have a ged s € F|x|; furthermore, there exist
polynomials u, v € F|x] such that up + vq = s.

ProOF. Without loss of generality, assume that p # 0 and degp > degg. We argue by induction
on degq. If degg = —o0, i.e., if ¢ = 0, then we can take s = p, u = 1, and v = 0. Now suppose that
q # 0. By Lemma 7.8, we can write p = fq+r with f, r € F[z] and degr < degq. By the inductive
assumption, ¢ and r have a gcd s, and there exist polynomials g and h such that gq + hr = s.

Exercise 7.15. Show that s is also a gcd of p and q.
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Hence, p and ¢ have a gcd. Furthermore,

s =gq+hr =gqg+hp—fq) = hp+(9—nhf)g,

so we can take u = h and v =g — hf. [ |

A polynomial s € F[x] is monic if s # 0 and [29°%*]s = 1. Given two polynomials p, ¢ € F[z], at
least one of which is nonzero, we write ged(p, ¢) for the unique monic ged of p and q.

Example 7.16. Let p:= 23 + 2 + 1, ¢ := 22 + 1. Viewing p and ¢ as polynomials over R, we have

8 4, 2 5
-1 °. _z fr_2).g = 1.
ged(p, q) , and 3 P+ ( 3:E + 31‘ 3) q

On the other hand, if we think of p and ¢ as polynomials over F3, then p = (222 + 2z + 1)g, so
ged(p,q) = . +2, and 0-p+2-q=x+2.

Exercise 7.17. Working over R, compute ged(2? + 1,23 + 1) and find polynomials u and v such
that u - (22 + 1) + v+ (v3 + 1) = ged(2? + 1,23 + 1).

Exercise 7.18. Same as Exercise 7.17, but working over Fy instead.

The notion of a ged extends naturally to more than two polynomials. Let pq, ..., pr € Flz]. A
polynomial s € F[z] is a greatest common divisor (or a gecd) of py, ..., pi if s divides all of py,
.., Pk, and whenever t € F[z] divides all of py, ..., pg, t also divides s.
Exercise 7.19 (Eucidean algorithm for several polynomials). Prove the following extension
of Theorem 7.14 to several polynomials: Let F' be a field and let p1, ..., py € F[z]. If at least one
of p1, ..., pr is nonzero, then pi, ..., px have a ged s € F[x]; furthermore, there exist polynomials
Ui, ..., ug € Flx] such that uipy + -+ + ugpg = s.

7.C. The resultant

Let F be a field and let p, ¢ € F[x] be two nonzero polynomials. A least common multiple (or an
Icm) of p and ¢ is a nonzero polynomial s € F[x] such that p and ¢ both divide s, and whenever p
and ¢ both divide some t € F[z], s also divides t.

Lemma 7.20 (Least common multiples). Let F' be a field and let p, q € F[x] be two nonzero
polynomials. Then p and q have an Icm, namely the polynomial pq/gcd(p, q).
PRrROOF. Clearly,
pg/ged(p, q) = p- (q/ged(p. q)) = ¢ - (p/ged(p, q))
is divisible by p and ¢q. What remains to show is that if f € F[z] is a polynomial divisible by p and
q, then f is also divisible by pg/ged(p, ¢), or, equivalently, f - ged(p, q) is divisible by pg. To that
end, write ged(p, ¢) = up + vq for some u, v € F[z]. Then
frged(p,q) = f-(up+vq) = ufp+ofyg

Since f is divisible by ¢, fp is divisible by pq. Similarly, since f is divisible by p, fq is also divisible
by pq. Thus, f - ged(p, q) is divisible by pg, and we are done. |

Suppose we are given a pair of nonzero polynomials p, ¢ € F[z]. We shall use linear-algebraic
tools to tackle the following general problem:

How can we decide whether ged(p, q) # 1, that is, whether p and q have a nontrivial
common divisor?

For concreteness, let n := degp and m = deg ¢ and write

p=ag+ax+ -+ a,x" and q=by+bix+---+bpa™.
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Exercise 7.21. Deduce from Lemma 7.20 that ged(p,q) # 1 if and only if there exist nonzero
polynomials u, v € F[z] such that

degu <m —1, degv <n-—1, and up +vg = 0.
In view of Exercise 7.21, it makes sense to consider the function
Pp,q: Pm—1<F) @Pn—l(F) - Pn-‘rm—l(F): ('LL,’U) = up + vq.

This function is linear, and, by Exercise 7.21, we have ged(p, ¢) # 1 if and only if ker(p, 4) # {0}.
Notice that since

dim(Pyy_1(F) ® Py_1(F)) = dim Ppyp1(F) = n +m,

we have ker(¢p ) # {0} if and only if ¢, , is not a bijection.
The next step is to compute a matrix corresponding to ¢, 4. Specifically, let

X = ((1,0), (z,0), (z%,0), ..., (z™1,0), (0,1), (0,2), (0,2?), ..., (0,z"1))
be the “obvious” ordered basis for P, _1(F)® P,_1(F) and let
Y = (1, z, 2%, ..., 2"
be the ordered basis for Py, 4m—1(F'). The matrix [¢p 4] x,y that expresses ¢, , with respect to these
bases is called the Sylvester matrix'® of p and ¢ and is denoted by Syl(p, ¢). Note that Syl(p, ¢)

is an (n + m)-by-(n + m) matrix. It is not hard to describe the entries of the Sylvester matrix
explicitly. Indeed, by definition, the first column of Syl(p, q) is

[opa(1L,O]y = [1-p+0-qly =[ply = [a a1 a -+ ap 0 - 0],

ending with m — 1 zeros. Similarly, the second column of Syl(p, q) is

[opa(@0)]y = [z-p+0-qly = [wply = [0 a0 a1 -+ an 0 -~ 0],

now ending with only m — 2 zeros; and so on. The first m columns of Syl(p, q) are

[ ao ]| 0 ] [ 0 ] [ 0 ]
aj aq 0 0
as al aq 0
Qp, s Ap—1 y QAp—9 s ey ag
0 an anp—1 ai
0 0 an ao

| 0 | L 0 ] | 0 ] | ap |

18Named after James Joseph Sylvester, a 19th century mathematician who, among other things, laid the foundations
of modern linear algebra. In particular, he introduced the term “matrix.”
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Analogously, the remaining n columns are

[ by ] 0 ] 0 [ 0 ]
b1 b() 0 0
b2 by bo 0
bm ; bmfl y bm72 ) ceey bO
0 bm, bm_1 b1
0 0 b bo

| 0 | | 0 ] | 0 | b

Example 7.22. If p =23 + 2+ 1 and ¢ = 22 + 1, then degp = 3 and degq = 1, so Syl(p,q) is a
4-by-4 matrix; namely

10

2 1

Syl(p, Q) - 0 2

=
NN = OO

00

The resultant of p and ¢ is defined by the formula res(p, q) = det(Syl(p,q)). It is immediate
from this definition that ¢, 4 is bijective if and only if res(p, q) # 0. Hence, we have the following:

Theorem 7.23 (Sylvester). Let F' be a field and let p, q € F[x] be nonzero polynomials. Then we

have ged(p, q) # 1 if and only if res(p, q) = 0. [
Example 7.24. Continuing Example 7.22, if p = 23 + 2 + 1 and ¢ = 2z + 1, then
1100
1210
res(p,q) = det 002 1]~ 3.
10 0 2

Hence, ged(p, q) = 1 when p and ¢ are viewed as polynomials over R. On the other hand, over 3
we have ged(p, q) # 1, since 3 = 0 (mod 3) (see Example 7.16).

Notice that res(p, q) is itself a (multivariate) polynomial in terms of the coefficients of p and gq.
For instance, when n = 2 and m = 1, we have

ag bp O
res(p, Q) = det a; by by = aob% + agb% — aybgb,
as 0 b

which is a polynomial in ag, a1, as, bg, b1. This fact will turn out to be important later on.

7.D. Multiple roots and derivatives

Let F be a field and let p € F[z] and c € F. We already know (from Exercise 7.9) that c is a root of
p if and only if x — ¢ divides p.

Definition 7.25. Let F' be a field and let p € F[z] be a nonzero polynomial. Suppose that ¢ € F is
a root of p. The multiplicity of ¢ is the largest integer k such that the polynomial (z — ¢)¥ divides
p. If the multiplicity of ¢ is at least 2, then c is called a multiple root of p; otherwise (i.e., if the
multiplicity of ¢ is precisely 1), ¢ is called a simple root.

You should know from calculus that there is a simple criterion for when ¢ € R is a multiple root

of a polynomial p € R[z]: ¢ is a multiple root of p if and only if p(c) = p/(c) = 0, where p’ is the
derivative of p. It turns out that this criterion, correctly interpreted, can be extended to polynomials
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over an arbitrary field. Of course, the usual “c—§” definition of the derivative doesn’t make much
sense in an arbitrary field (what would it mean in a finite field, for example?), but we can define

derivatives of polynomials without invoking limits, by simply declaring the derivative of p to be

what we know it “ought to be”:1

Definition 7.26. Let F' be a field and let p = >, aix® be a polynomial over F in a variable z. The
derivative of p is the polynomial p’ given by

p = Z(kak)a:kfl,

k

where kay, is, as usual, a shortcut for ay + - - - + ar (k summands).

Example 7.27. Let p be a prime number. Viewing z? as a polynomial over F,, we get
(zP) = pzP~ 1 =0 (mod p).

Hence, 2?7 is a polynomial over F,, of degree p > 0 whose derivative is zero.

Exercise 7.28. Let F' be a field of characteristic zero and let p € F[x] be polynomial of positive
degree. Show that p’ # 0 and, in fact, degp’ = degp — 1. (In other words, the situation described
in Example 7.27 cannot occur in a field of characteristic zero.)

Exercise 7.29. Let F be a field and let p, ¢ € F[z]. Show that (p +q) =p' + ¢'.
Lemma 7.30 (Product rule). Let F be a field and let p, ¢ € F[z]. Then (pq)' = p'q + pq'.

PROOF. It is enough to consider the case when p = z* and ¢ = ¢ for some k, ¢ € N (why?). We
simply compute and compare both sides:

(pq)/ _ (ij‘xg)/ _ (karZ)/ _ (k+€):1}k+£71;
p/q+pq/ _ (xk)/x€+$k(x£)/ _ (k‘l’k_l)l’e—kxk(fl‘z_l) _ (k—kﬁ)x‘k'%_l. -

Theorem 7.31. Let F' be a field and let p € F[x] be a nonzero polynomial. Then c € F' is a multiple
root of p if and only if p(c) = p/(c) = 0.

ProoF. If p(c) = 0, then we can write p = (x — ¢)q for some polynomial ¢ € F[z], and c¢ is a
multiple root of p if and only if ¢(c) = 0. Using the product rule, we get

/

P = (z-cq) =q+ (-0
Hence, p/(c) = ¢(c). In particular, ¢(c) = 0 if and only if p(c) = 0, as desired. |

/i

For a polynomial p € F[z], let p*) denote the k-th derivative of p, i.e., let p(¥) := p”"/ (k primes).

Exercise 7.32. Let F be a field of characteristic 0 and let p € F[z] be a nonzero polynomial. Show
that c € F' is a root of p of multiplicity k if and only if

pe)=p@) = =p" D=0 and  pP(c) 0.

In Exercise 7.32, it is important to assume that the characteristic of F'is 0 (since in a field of positive
characteristic, the derivative of a polynomial of positive degree can be zero—see Example 7.27).

Exercise 7.33. Let F be a field of characteristic p > 0 and let f € F[x]. Show that f®) = 0.

19T his philosophy plays a significant role in the area of algebraic geometry, which is often concerned with extending
“geometric” or “analytic” concepts to more general “algebraic” settings.
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7.E. Algebraically closed fields

A field F is algebraically closed if every polynomial p € F[z] of degree at least 1 has at least one
root in F.

Example 7.34. The field R is not algebraically closed, because the polynomial z? + 1 has no real
roots. The field Fy is also not algebraically closed, because z? + = + 1 has no roots in F.

Exercise 7.35. Show that every algebraically closed field is infinite. Hint: Let F' be a finite field
and consider the polynomial 1+ [[,.p(z — a).

The following theorem, called the fundamental theorem of algebra, gives the main example of an
algebraically closed field:

Theorem 7.36 (Fundamental theorem of algebra). The field C of complex numbers is
algebraically closed.

Exercise 7.37. Use Theorem 7.36 and Exercise 4.27 to show that the field Q of algebraic numbers
is algebraically closed.

There are many proofs of Theorem 7.36, most of which rely on facts from complex analysis. We
will not prove Theorem 7.36 in these notes.

Even though C is the most familiar algebraically closed field, there are many others. In particular,
the characteristic of an algebraically closed field can by positive (recall that if the characteristic of a
field Fis p> 0, then p-1 =0 in F).

Theorem 7.38. Let F' be a field. Then there is an algebraically closed field extension K 2 F of F.
We won’t prove Theorem 7.38 here either.

Lemma 7.39. Let F be an algebraically closed field and let p € F[x] be a polynomial of degreen > 1.
Then p splits in F, i.e., there exist elements a, ay, ..., a, € F such that p = a(x —ay) -+ (x — ayp).

Exercise 7.40. Prove Lemma 7.39.

Exercise 7.41. Let F' be an algebraically closed field and let p, ¢ € F[z] be nonzero polynomials.
Show that ged(p, q) # 1 if and only if p and ¢ have a common root.

Corollary 7.42. Let F be an algebraically closed field and let p € F[x] be a nonzero polynomial.
Suppose that p’ # 0. Then p has a multiple root if and only if res(p,p’) = 0. |

Example 7.43. Let F' be an algebraically closed field and let p € F'[x] be a polynomial of degree 2:
p=ao+ a1+ a3,
where ag, a1, ag € F, ag # 0. If char(F) # 2, then p/ = a1 + 2asx is a polynomial of degree 1, and

a al 0
res(p,p’) = det | a1 203 @ = ay(dagag — a?).
as 0 2a9

Since ay # 0, we recover the familiar fact that p has a multiple root if and only if 4agas — a? = 0.

7.F. The Schwartz—Zippel lemma

Let F be a field and let p € F[x1,...,2,] be a polynomial over F' in n variables; that is, p is a
combination of finitely many monomials (i.e., expressions of the form a:il cexln with ¢y, ..., t, € N)

with coefficients in F. The degree of a monomial 2%' - - -zt is

deg(aht - aln) == t) + -+ + t,,
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and the (total) degree of p, denoted by deg p, is the largest degree of a monomial appearing in p
with a nonzero coefficient. For instance,

deg(z122 + xixy — 271 — 229 +3) = 3.
As usual, the degree of the zero polynomial is, by convention, equal to —oo.

Exercise 7.44. Let Py ,,(F') denote the F-vector space of all polynomials over a field F' in n variables

of degree at most d. Show that
d
dim Py ,,(F) = (" * )
n
Hint: https://youtu.be/w0i_ZF1GTVY.

Example 7.45. The monomials in n variables of degree at most d form a basis for P, (F"). Hence,
for example, a basis for P o(F) is
{17 Ty, T2, l‘%, 12, 117%},

and thus the dimension of the space P 2(F) is 6, which is indeed equal to (2;2).

Let p € F[z1,...,z,]. The zero locus of p is the set
Zp(p) ={(c1,...,¢cn) € F" : plcr, ..., cn) = 0}

Theorem 7.46 (Schwartz—Zippel lemma). Let F' be a field and let p € F[z1,...,x,] be a
nonzero polynomial in n variables of degree at most d. Let S € F' be a nonempty finite set. Then
[Zr(p) 0 S"| < dIS|"

Equivalently, if we choose n elements c1, ..., ¢, € S independently and uniformly at random, then

d
Plp(ct,...,cn) = 0] < Kk
Corollary 7.47. Let F be an infinite field and let p € F|x1,...,x,]. If Zp(p) = F™ (in other words,
if p(c) = 0 for all ce F™), then p = 0 as a polynomial.

PROOF. Suppose that p # 0 and let d := degp. Let S be any finite subset of F' of size greater
than d. Then, with probability at least 1 — d/|S| > 0, a random tuple (cy,...,c,) € S™ satisfies
p(e1, ..., ¢n) # 0, meaning that the zero locus of p cannot be all of F™. |

Corollary 7.48. Let F' be an infinite field and let py, ..., px € F[x1,...,x,] be a finite collection
of polynomials. If Zp(p1) v ... U Zp(pi) = F", then p; = 0 for some 1 < i < k.

PROOF. Follows from the observation that Zp(p1) U ... U Zp(pr) = Zp(p1 - pk)- [

What makes Corollary 7.47 particularly useful is that it allows one to show that two polynomials
are equal (i.e., their difference is the zero polynomial) without explicitly computing and comparing
their coefficients. Consider, for example, the product rule for derivatives:

(rg)" =p'a+pd. (7.49)
If we write p = ag + a1x + - -+ + apz™ and ¢ = bg + byx + - - - + byx™, then both (pg)" and p'q + pq’
can be viewed as polynomials in the variables z, aq, ..., an, bg, ..., by, with integer coefficients.

For instance, when n = m = 2, both these polynomials are equal to
agb1 + a1bg + 2apbox + 2a1b1x + 2abgx + 3a1b2x2 + 3(12b1$2 + 4a2b2m3.

Now, we know from calculus that the product rule holds for polynomials with real coefficients. This
means that the two multivariate polynomials representing the two sides of (7.49) take the same
value for every choice of x, ag, ..., ay, bg, ..., by, € R. But then, by Corollary 7.47, this shows that
they must be equal as polynomials. In particular, if we now plug in values for the coefficients ag,
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cevy Gy, b,y ..., by from any field F' whatsoever, we would get two equal polynomials in x over F'.
In other words, the product rule (7.49) must hold over every field?. Of course, in this particular
example, it is easy enough to compute the two sides of (7.49) explicitly (as is done in the proof of
Lemma 7.30). However, we will soon encounter situations where explicit computation is too difficult,
and the above proof strategy becomes indispensable.

PROOF OF THEOREM 7.46. The proof is by induction on n. For n = 1, Theorem 7.46 says that
if p € F[z] is a nonzero univariate polynomial of degree at most d, then it has at most d roots—but
this we already know (see Exercise 7.10). Now assume that n > 1 and that the Schwartz—Zippel
lemma holds for all polynomials in fewer than n variables. Let p € F[zq,...,x,] be a nonzero
polynomial of degree at most d. Let k£ be the largest degree in which the variable x,, appears in p
(it is possible that k£ = 0). We can write (uniquely)

P = po +P1$n+p2xi+“'+m$ﬁ,

where pg, ..., pr are polynomials in x1, ..., xy—1. Note that, by the choice of k, p; is a nonzero
polynomial. Furthermore, degpr < d — k. If we plug in any specific values, say ci, ..., ¢,—1, for x1,
..., Tnp_1 into p, then p(ey,...,cp—1,2,) becomes a polynomial in a single variable x,, of degree at
most k. Such a polynomial can have at most k roots—unless it’s the zero polynomial, which can
only happen when pi(cy,...,cp—1) = 0. This motivates splitting the set Zp(p) N S™ as follows:

|Zr(p) nS™| = |{(c1,...,cn) €S : pler,y...,en) =0 and pg(er, ..., cn-1) # 0}
+{(c1,...,cn) €S : pler,...,cn) =0 and pr(cr,...,cn—1) = 0}].
Set
Ny = [{(c1,...,¢n) €S : pler, ... cn) =0 and pi(cy,...,cn—1) # 0}[;
Ny = |{(c1,...,¢en) €S : pler,...,cn) =0 and pg(er, ..., cn—1) = 0}].

To upper bound Nj, observe that there are (trivially) at most |S|*~! choices for (c1,...,c,—1), and
for each such choice, assuming that pg(ci,...,c,—1) # 0, there are at most k choices for ¢, (since
the polynomial p(cy,...,cp—1,2,) can have at most k roots). Thus, we have

Ny < |S|n_1'k7.

On the other hand, to upper bound N», notice that, by the inductive hypothesis applied to pg,
there are at most (d — k)|S|" 2 choices for (ci,...,c,—1) With pi(er,...,cn1) = 0, and for each
such choice there can be (trivially) at most |S| choices for ¢,. Therefore,

Ny < (d—R)|S|"2-1S| = (d—k)|S|" .

Hence,
1Zr(p) 0 S"| = Ni+ Ny < |S" Tk + (d—k)|S|"" = d|s|",
and we are done. [}

7.G. Application: identity testing

At this point, it would be amiss not to mention the numerous applications of the Schwartz—Zippel
lemma in computer science. It often happens that a computational problem can be reduced to the
question of whether or not two multivariate polynomials are equal. Calculating and comparing the
coeflicients of the polynomials in question can sometimes be too time-consuming; on the other hand,
evaluating the given polynomials at a particular input may be more feasible. The Schwartz—Zippel
lemma then gives an upper bound on the probability that two distinct polynomials will take the
same value at a random input, which can then be used to show that the two given polynomials are
equal—if not with certainty, then it least with overwhelming probability.

20And even over every commutative ring.
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The approach is best explained with the help of an example. Consider the following problem:
Let x be a binary operation on an n-element set X. Is this operation associative?

In other words, we are given an n-by-n multiplication table for a binary operation *, and our goal is
to decide, as efficiently as we can, whether  is associative, i.e., whether we have

(x*xy)*z=xx(y*2z) for all z, y, z € X.
We say that (z,y, z) € X? is a nonassociative triple if
(Try)*xz#z*(y*2),

so our question can be restated as, is there a nonassociative triple for x?

Example 7.50. Let X := {1,...,n}, where n > 3, and define a binary operation * on X by

[ G e
T2 i) = (1, 2).

Then the operation * is nonassociative, and it has only one nonassociative triple, namely (1,1, 2).

An obvious algorithm for this problem is to test every single triple (z,y, z) € X2 for nonassociativity.
Since there are n? triples to check, this algorithm requires roughly n? steps. It turns out that if we
can handle a small probability of making a mistake, then there is a much faster approach:

Theorem 7.51 (Rajagopalan—Schulman). Suppose that we are given a multiplication table for a
binary operation » on an n-element set X. There is a randomized algorithm with running time
O(n?) that outputs an answer Yes or No so that:

e if the operation  is associative, the answer is always Yes;
e if the operation * is nonassociative, then the answer is No with probability at least 1/2.

Remark 7.52. It may seem like 1/2 is a rather high probability of making a mistake. However,
this probability can be made arbitrarily small by simply running the same algorithm several times.
For instance, suppose that we run the algorithm twenty times in a row. This produces a sequence
of twenty Yes/No answers. If at least one of the answers was No, we would know for sure that the
operation x is nonassociative. On the other hand, if all twenty answers were Yes, then we should
feel fairly confident that * is actually associative. Indeed, if x weren’t associative, then each one of
the answers would be Yes with probability at most 1/2, so the probability of answering Yes twenty
times in a row is at most (1/2)?°, which is less than one in a million.

PRrRoOOF. The difficulty of the problem is that even if x is nonassociative, it can still have only
very few nonassociative triples (see Example 7.50). The idea is to use a bit of linear algebra to
construct a new binary operation based on * in such a way that if x is associative, then so is the new
operation, while if * is nonassociative, then at least half of the possible inputs for the new operation
form nonassociative triples.

Let F be a field of size at least 7 (in practice, it is convenient to make F' a finite field, say F7).
We may then view the n-element set X = {e1,...,e,} as a basis for an n-dimensional vector space
V over F. We extend * to a bilinear operation on V in the usual way:

(Z aiei) * (Z bjej> = Z Z(aibj)(ei * €j). (7.53)
i=1 j=1 i=1j=1

Exercise 7.54. Show that the extended operation * on V is associative if and only if so is the
original operation * on X.

Note that, given the coordinates of two vectors x, y € V, we can use formula (7.53) to compute
the coordinates of the vector  * y in O(n?) steps (why?). And here’s the randomized algorithm for
testing associativity:
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e Fix a set S < F of size 6.
e Choose elements ay, ..., a, b1, ..., by, c1, ..., ¢y € 5 independently and uniformly at
random and set

n n n
T = Z a;€;, Y= Z bje;, and Z = Z CLEL-
i=1 j=1 k=1

e Compute the vectors (x *y) * z and = x (y » z). If the results are equal, output Yes; otherwise,
output No.

The most time-consuming part of this procedure is computing the coordinates of the vectors (z*y)*z
and x x (y » z), as this requires performing the operation * on elements of V' four times—but this
still amounts to O(n?) steps.

Obviously, if the operation * is associative, the above algorithm always outputs Yes. Now suppose
that * is nonassociative. We have to prove that the probability that the algorithm’s answer is Yes
in this case is at most 1/2.

Since we are assuming that = is nonassociative, there exist indices 1 < «, 5, v < n such that

er = (ea *xeg) x ey # €q * (€3 * €y) = €.

Let p(x,y, z) denote the coefficient of ey in (z * y) x z. Since we have

e ((2 ) ' (Z bjej)) ' (Z ) = 35 S o) (evey) +en)

i=1 k=1 i=1j=1k=1
we conclude that
p(z,y,2) = > aibjer,
(esxej)xer, =€
where the sum is over all triples of indices (i, j, k) such that (e; x e;) x e, = e,. In particular, p is a
polynomial in the 3n variables ay, ..., ap, b1, ..., by, c1, ..., ¢, of degree 3. (Note that p # 0 since
the monomial eyege, appears in p with coefficient 1.) Similarly, if we let ¢(z,y, z) be the coefficient
of e in x x (y * z), then
Q(%ya Z) = Z aibjclm
e;ix(ejxer) =eg
which is also a polynomial in of degree at most 3. (We say “at most 3” because ¢ may be zero.) By
the choice of «, 3, and ~, we have

p(echeﬁ?e’}’) =1#0= Q(eave,@ae’y)7
so the polynomials p and ¢ are distinct. This means that p — ¢ is a nonzero polynomial of degree

at most 3, and thus, by the Schwartz—Zippel lemma, the probability that p(z,y, z) = ¢(x,y, z) for
randomly chosen z, y, z € S™ is at most 3/|S| = 3/6 = 1/2, as desired. [

Extra exercises for Section 7

Exercise 7.55. For this exercise, we need to define resultants of multivariate polynomials. Let
F Dbe a field and let p, ¢ € F[z1,...,z,] be a pair of nonzero polynomials over F' in n variables.
For each 1 < i < n, we may consider p and ¢ as polynomials in x; whose coefficients are, in turn,
polynomials in the remaining n — 1 variables. This allows us to compute the resultant of p and ¢
with respect to the variable z;, denoted by res, (p, ¢). For instance,
y?+22 0 0
resy(x? + y? + 2%, 2yz) = det 0 yz 0 — yt2? + 4224
1 0 yz

Note that resg, (p, q) is itself a polynomial over F' in the remaining n — 1 variables.
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In this exercise we work over C. Given a pair of polynomials f, g € C[t] of degree at least 1, we
consider the set Sy 4 S C? parameterized by f and g¢:

Sig=1{(x,y)€C? : x = f(t), y = g(t) for some t € C}.

(a) Consider the polynomials x — f(t) and y — g(¢) in the three variables ¢, z, y. Let p € C[z, y]
be the polynomial given by the formula

p = resy(z — f(t), y —g(t)).

Show that Sy, is the zero locus of p.
(b) Find a polynomial p € C[z, y] whose zero locus is parameterized by the polynomials

f@)=t*+t and  g(t) =13+t

Exercise 7.56 (Kakeya problem over a finite field). For this exercise, F' is a finite field of
size ¢. A subset E € F™ is called a Kakeya set?! if it “contains a line in every direction,” i.e., if for
each nonzero vector v € F", there is some a € F such that

{a+tv:teF} < E.
Our goal is to establish the following lower bound on the size of a Kakeya set:

Theorem 7.57 (Dvir). If E € F" is a Kakeya set, then

B > <q+n—1>.
n

Notice that (quZ_l) = ¢"/n! = (1/n!)|F"|, so it follows from Theorem 7.57 that a Kakeya set must
occupy at least a (1/n!) proportion of the entire space F™, regardless of the size of the finite field F.

Suppose, towards a contradiction, that E < F" is a Kakeya set such that |E| < (q+2_1).

(a) Show that there is a nonzero polynomial p € F[x1,...,x,]| of degree d < ¢ such that
E < Zp(p). Hint: Compare the dimension of the space of all polynomials in n variables of
degree less than ¢ with that of the space FF of all functions from E to F.

Let p be the polynomial obtained in part (a) and let d := degp. Write
p=potpr+--+pdg

where p; is the i-th homogeneous component of p, i.e., the polynomial obtained from p by only
retaining the monomials of degree ¢. By definition, pg # 0 and d > 1.
Take any nonzero vector v = (vy,...,v,) € F™ and let a = (ay,...,a,) € E be such that

{a+tv:teF} C E.
(Such a exists because E is a Kakeya set.) Define f, , € F[t] to be the polynomial given by
foa(t) = pla+tv) = plar + tvr,...,an + toy).

(b) Show that f, 4 is the zero polynomial.
(c) Show that [t%]f,a = pa(v), and hence pg(v) = 0 for all v € F™.
(d) Finish the proof of Theorem 7.57. Hint: Use Schwartz—Zippel.

21Named after the Japanese mathematician Soichi Kakeya.
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8. CLASSIFICATION OF LINEAR TRANSFORMATIONS
8.A. Conjugacy

Let V be a vector space over a field F'. A (linear) transformation of V' is a map ¢ € Lin(V, V). We
can view the pair (V, ) as an algebraic structure in its own right, and there is a natural notion of
isomorphism for such structures. Namely, if W is another vector space over F' and ¢ € Lin(W, W),
then the structures (V, ) and (W, 1) as isomorphic if there is a linear bijection 7: V' — W (an
isomorphism) such that for all x € V,

or, to put it more concisely,
mop = Yom.
The diagram below illustrates this situation:

For the structures (V,¢) and (W, ) to be isomorphic in the above sense, the vector spaces V' and
W must themselves be isomorphic. Therefore, it is convenient to assume that V = W and just
compare pairs of transformations ¢, 1 € Lin(V, V). This motivates the following definition:

Definition 8.1. Let V be a vector space over a field F'. We say that linear transformations ¢,
1 € Lin(V, V') are conjugate, in symbols ¢ = 1, if there is a linear bijection w: V' — V such that

Top = Yor.

There are a number of equivalent ways to define conjugacy of transformations ¢, ¥ € Lin(V, V).
For instance, ¢ = 1) if and only if there is a linear bijection 7: V — V such that ¢y = ropon~L
Also, we have ¢ = 9 if and only if there exist bases X, Y for V such that [¢]x x = [¢]yvy (why?).

Our goal in this section is to classify transformations ¢ € Lin(V, V) up to conjugacy, provided
that the space V is finite-dimensional and the field F is algebraically closed. When dimV = n,
transformations of V' can be identified with n-by-n matrices over F', and so we will freely switch
between working with transformations and with matrices. Thus, for example, we say that two
matrices A, B € M, x,(F') are conjugate if there is a matrix C' € M, «,(F') of rank n such that
CA = BC. Also, describing a transformation ¢ € Lin(V, V) of an n-dimensional space V' up to
conjugacy is tantamount to finding a basis X for V' in which the matrix [¢]x, x has a particularly
simple form.

Example 8.2. If dim V' = 1, then every linear transformation of V' has the form z — axz for a fixed
scalar a € I, and it is clear that any such transformation is only conjugate to itself.

Example 8.3. Already in the case when dim V = 2, the situation becomes somewhat complicated.
We will show that if F is algebraically closed, then for each transformation ¢ € Lin(V, V) of a 2-
dimensional F-vector space V, there is a basis X = (z1,22) for V in which the matrix [¢]x, x looks

A1 0 A0

either like this: [0 Ay 1 M

], A1, Ay € F| or like this: [ ], Ae L.
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In other words, we either have

o(z1) = Aix1 and o(z2) = Aaxa,
or else,
o(r1) = Az1 + 22 and o(z2) = Axo.

8.B. Eigenvectors and eigenvalues

Definition 8.4. Let V' be a vector space over a field F' and let ¢ € Lin(V, V). A subspace W € V
is p-invariant if for all x € W, we have ¢(z) € W as well.

If o € Lin(V, V) and W < V is a g-invariant subspace, then the restriction p|y of ¢ to W can
be thought of as a linear transformation of W. Thus, if we find a @p-invariant subspace W, then we
can first analyze the behavior ¢ on W and then hope to deal with the action of ¢ on the rest of V'
separately.

Example 8.5. The entire space V itself and the zero space {0} are p-invariant for every linear
transformation ¢ € Lin(V, V).

Example 8.6. Suppose that ¢ € Lin(R?,R?) is the R-linear transformation of R? given by rotation
around the vertical axis by some fixed angle « (see Fig. 5(a)). Then the vertical axis is y-invariant,
and @ acts on it as the identity transformation; the horizontal plane is also -invariant, and ¢ acts
on it as the rotation around the origin by the angle « (see Fig. 5(b)(c)).

-

ot 5

(a) (b) (c)

Figure 5. Rotation in R? around the vertical axis.

Of particular interest to us are the simplest nontrivial invariant subspaces, i.e., invariant subspaces
of dimension 1. Let V' be a vector space over a field F' and let ¢ € Lin(V, V). A nonzero element
r eV is called an eigenvector®? of ¢ if the 1-dimensional subspace Span({z}) is ¢-invariant, i.e., if
o(x) = Az for some A\ € F. This A is called the eigenvalue of ¢ corresponding to . The set of all
eigenvalues of ¢ is called the spectrum of ¢ and is denoted Spec(yp). For A € Spec(yp), the set

EN) ={zeV : o) =}
is called the eigenspace of ¢ corresponding to A. The term “eigenspace” is justified, because
E(X\) = ker(¢ — Aidy),

and thus it is indeed a subspace of V. Note that F(\) is the set of all eigenvectors corresponding to
A, together with the zero vector. By definition, if A € Spec(yp), then dim E(A) > 1.
Now suppose that V is a finite-dimensional F-vector space and let n := dim V. Suppose that
¢ € Lin(V, V) is a linear transformation of V. What are the eigenvalues of ¢? By definition, t € F’
is an eigenvalue of ¢ if and only if
ker((p - tid\/) # {0}7

22 Not named after the famous German mathematician Eugen Eigen.
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which in turn is equivalent to

det(¢ — tidy) = 0.
(This is where we use that V is finite-dimensional.) To compute the determinant, pick any ordered
basis X for V and let A := [p]x,x be the matrix representing ¢ in this basis. Then

A D) =t A(L2) - A(Ln)
A1) A2.2) =t - A@2.n)
det(p — tidy) = det(A —tl,) = det : : :
A1) A(n,2) - Alnon)—t

After expanding this determinant using the Leibniz formula, we obtain a polynomial in ¢ over F' of
degree n. This polynomial is called the characteristic polynomial of the transformation ¢ (or of
the matrix A) and we denote it by Char, (or Charya).

Exercise 8.7. Show that [t"]Char, = (—1)".

Example 8.8. In the 2-by-2 case, the characteristic polynomial of a matrix
A = | @1 012
a21 a2

—t ai19

is

Charx(t) = det[ a1

2
= 1t — (a11 + a22)t + ai1a22 — aq12a91.
az  az —t } ( )

From the above discussion, we obtain the following conclusion:

Theorem 8.9. Let V' be a finite-dimensional F-vector space and let ¢ € Lin(V, V). Then X € F is
an eigenvalue of I' if and only if X is a root of Char,,. |

Corollary 8.10. Let V be a finite-dimensional vector space over an algebraically closed field F' and
let p € Lin(V, V). If dim V' > 1, then ¢ has an eigenvalue. [

Example 8.11. Consider the 2-by-2 matrix
0 1
[0
Its characteristic polynomial is Chara(t) = t*> — 1, so, viewed as a matrix over R, it has two
eigenvalues: 1 and —1. On the other hand, the matrix

0 -1
o [1 7]
has characteristic polynomial Charg(t) = t? + 1, so B has no eigenvalues over R. Nevertheless, it
has two eigenvalues over C, namely i and —i.

Example 8.12. Even over an algebraically closed field, a linear transformation of an infinite-
dimensional space may have no eigenvalues. For example, let F' be any field and consider the F-
vector space FN of all infinite sequences (zq, z1, .. .) of elements of F. Then the map ¢ € Lin(FY, FN)
given by the formula

o(zo, z1,22...) = (0,20, 21,...)
has no eigenvalues (exercisel!).

Exercise 8.13. Let V be an n-dimensional vector space over a field F' and let ¢ € Lin(V, V). Show
that [Spec(p)| < n.

Exercise 8.14. Let F be a field and let A € M,,»,,(F'). Show that Chary = Char 4t and conclude
that Spec(A) = Spec(AT).
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The following (almost trivial) observation is often useful. Suppose that V' is a finite-dimensional
vector space over an algebraically closed field F' and let ¢ € Lin(V, V). If a subspace W < V is
p-invariant, then the restriction |y is a linear transformation of W, and hence, assuming that
W # {0}, it has an eigenvalue as well as a corresponding eigenvector. But every eigenvector of ¢|w
is, of course, also an eigenvector of ¢ itself, and thus W contains an eigenvector of .

8.C. Diagonalizable transformations

There isn’t a question that one can’t immediately answer
about a diagonal matrix.

Kevin O’Meara, John Clark, and Charles Vinsonhaler

Definition 8.15. Let V be a vector space over a field F' and let ¢ € Lin(V, V). We say that ¢ is
diagonalizable if V' has a basis consisting of eigenvectors of .

The word “diagonalizable” is explained by the following observation. Suppose that ¢ € Lin(V, V)
is a diagonalizable linear transformation of an n-dimensional vector space V and let X = (z1,...,2,)
be an ordered basis for V' consisting of eigenvectors of ¢. Then the matrix [¢]x x looks like this:

M O - 0
0 X -+ 0
lelxx =1 . . . . |
0 0 - A\,
where A1, ..., A\, are the eigenvalues of ¢ corresponding to x1, ..., T, respectively. A matrix of

this form is called diagonal.

Diagonalizable transformations are particularly easy to understand. Unfortunately, not every
transformation is diagonalizable, even if we are working in a finite-dimensional vector space over an
algebraically closed field.

Example 8.16. Consider the matrix

1 1
A = [ 0 1 :| € MQXQ(C).
Its characteristic polynomial is Chara(t) = (¢t — 1)2, and thus its only eigenvalue is 1. This means
that if A were diagonalizable, then the would exist a basis for M1 (C) consisting of two elements x;
and x9 such that Azx; = z1 and Azy = x9. But since {x1,z2} is a basis, that would imply Az = z
for all x € Max1(C), which is absurd.

Nevertheless, over an algebraically closed field, most linear transformations are diagonalizable,
in a certain precise sense (explained below), and so the bulk of the work in classifying linear
transformations up to conjugacy really consists in “taming” the nasty “exceptional” cases.

Lemma 8.17. Let V' be an F-vector space and let ¢ € Lin(V, V). Suppose that S < V is a set
whose elements are eigenvectors of ¢ corresponding to distinct eigenvalues. Then S is independent.

PROOF. Suppose, towards a contradiction, that S is not independent, and let
a1x1 + -+ anTy, = 0

be an equality, where: a1, ..., a, are nonzero elements of F; x1, ..., x, are pairwise distinct
elements of S; and n > 1 is the smallest possible. Note that we must have n > 2, since an equality
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of the form a;x; = 0 is impossible. For each 1 < i < n, let A; be the eigenvalue of ¢ corresponding
to x;. By the assumption on S, the elements Ay, ..., A, are pairwise distinct. Now we write

0= (¢—Aidy)(0) = (p— A\pidy)(a1z1 + -+ + apxy)

= a1(M — Ap)xr + -+ 4 O=250T, -
Let b; := a;(A\; — \p). Then the coefficients by, ..., b,—1 are nonzero, while
bizy 4 -+ bp_12,_1 =0,

contradicting the choice of n. |

Exercise 8.18. Lemma 8.17 can be used to give an alternative solution to Exercise 3.43. Consider
the R-vector space RY of all infinite sequences of reals. For each a € R, let

ea = (1,a,a%,0?,...).
Let p: RN — RN be the linear map given by
o(xo, x1,22...) = (21,22, x3,...).

Show that for each « € R, the sequence e, is an eigenvector of ¢ with eigenvalue «, and conclude
that the set {e, : « € R} is independent.

Corollary 8.19. Let V' be an n-dimensional vector space over a field F' and let ¢ € Lin(V, V). If
|Spec(p)| = n, then ¢ is diagonalizable.

PROOF. Suppose the eigenvalues of ¢ are A1, ..., A,. For each 1 < ¢ < n, pick any eigenvector z;
corresponding to A;. By Lemma 8.17, the set {z1,...,2,} is independent. But dim V' = n, so this
set must be a basis. |

In the setting of Corollary 8.19, saying that |Spec(¢)| = n is the same as to say that the polynomial
Char, has n distinct roots. Over an algebraically closed field, a “typical” polynomial of degree n
does have n distinct roots—meaning that a “typical” transformation ¢ € Lin(V, V') is diagonalizable.
(We will use a precise version of this idea in the next subsection.)

8.D. The Cayley—Hamilton theorem

Let V' be an F-vector space and let ¢ € Lin(V, V). If we wish to understand the structure of ¢,
there are two kinds of things we can try: we could investigate what happens when ¢ is applied
repeatedly, and we could use the vector space structure of V' to take linear combinations of ¢ with
other linear transformations. This leads us to the following definitions. For each n € N| let

Q"= @popo---op.
n terms
By definition, ¢° = idy, ¢! = ¢, ¢? = v 0 ¢, and so on. Given a polynomial
p = ap+ait+---+a,t" € F[t],

define

p(p) == apidy +a1p + -+ + ape™ € Lin(V, V).
Similarly, for a matrix A € M, (F'), we let

p(A) = aplp, + a1A+ -+ anA" € Mysn(F).
Lemma 8.20. Let V' be an F-vector space and let ¢ € Lin(V, V). If p, q € F[t], then

p(p) oqlp) = q(w) op(p) = (pg)(p).
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PROOF. It is enough to consider the case when p = t* and ¢ = t* (why?). Then

ple) =" ale)=¢",  (pa)(p) = O,

and, of course, pF o f = @ o Pk = PFHL, [
Exercise 8.21. Let V be an F-vector space and let ¢ € Lin(V, V). Let x € V be an eigenvector

of ¢ with eigenvalue A\. Show that for each polynomial p € F[t], x is an eigenvector of p(y) with
eigenvalue p(\). In other words, if ¢(x) = A -z, then p(p)(z) = p(A) - .

Lemma 8.22. Let V be a finite-dimensional vector space over a field F' and let ¢ € Lin(V,V'). Then
there is a nonzero polynomial p € F[t] such that p(y) = 0.

PROOF. We have already seen a very similar argument in the proof of Lemma 4.20. Let n := dim V.
Then dim Lin(V, V) = n?, and hence the tuple
. 2
(ldV7SO> SOQ, .- .’gpn )
is not independent. Thus, there exist coefficients ag, ..., a,2 € F', not all zero, such that
aoidy a1 + -+ + an2g0"2 = 0.
This means that the polynomial p := ag + a1t + --- + anzt”2 is as desired. |

The above proof of Lemma 8.22 produces a polynomial p of degree at most n?, where n is the
dimension of V. It turns out that one can find a suitable polynomial of degree n; in fact, the
characteristic polynomial of ¢ does the trick:

Theorem 8.23 (Frobenius, Cayley-Hamilton theorem??). Let V be a finite-dimensional vector
space over a field F' and let ¢ € Lin(V, V). Then Char,(p) = 0. Equivalently, if A € My, x,(F') is an
n-by-n matrix, then Chars(A) = 0.

Remark 8.24. It is tempting to give the following “proof”: “Let A € My, (F). By definition,
Char4(t) = det(A — t1,,). Hence,

Charg(A) = det(A — AL,) = det(A— A) = det(0) = 0,
as desired.” This is, of course, absurd. For instance, this so-called “argument” shows that Char4(A),
an n-by-n matriz, is equal to 0 € F', a scalar.

Example 8.25. Suppose that A is a 2-by-2 matrix and write
A — [ air a2 ]
ag1 a2
Then Chara(t) = t?2 — (a11 + aze)t + ai1ass — aj2az21, and thus
Chary(A) = A% — (a11 + a)A + (ay1a9 — ayzas1)ls

2 2

. aj] + ai2a21 aiiaiz + ajzag2 ai] +aiiaze  a11a12 + ai2a22

= 2 - 2
11021 + G21G22  @12021 + A9 a11G21 + az1a22  a11022 + Ay

4 | enaz —a2an 0 _ {00
0 a11a22 — 12021 0 0|’

as claimed. Notice that, regardless of the size of the matrix A, the entries of Char4(A) are going
to be polynomials in the entries of A with integer coefficients, and the Cayley—Hamilton theorem
asserts that all these polynomials are zero. This observation plays a crucial role in the proof of the
Cayley—Hamilton theorem given below.

23The first complete proof of this theorem was given by Ferdinand Georg Frobenius in 1878. However, it is usually
called the Cayley—Hamilton theorem, after Arthur Cayley and William Rowan Hamilton, who considered some of its
special cases in the 1850s.
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ProOOF. We proceed in three steps.
First, assume that ¢ is diagonalizable. Let {x1,...,z,} be a basis for V consisting of eigenvectors
of ¢ and for each 1 < i < n, let \; be the eigenvalue of ¢ corresponding to x;. By Exercise 8.21,

Chary(p)(x;) = Charg(N;) -a; = 0-2; = 0,

where we use the fact that eigenvalues of ¢ are roots of the characteristic polynomial Char,. Since
Char,(¢)(z;) = 0 for every basis vector x;, Char,(¢) must be the zero function.

Second, we shall consider arbitrary ¢ but assume that F' is an algebraically closed field of
characteristic 0, for example, the field C of complex numbers. It will be more convenient to work
with matrices rather than with linear transformations. Let A be an n-by-n matrix and write

ai;p Aln

Qp1 -+ QOnpn

We already know that Chary(A) = 0 if A is diagonalizable. On the other hand, if A is not
diagonalizable, then, by Corollary 8.19, A has fewer than n eigenvalues, which, since F' is algebraically
closed, means that the polynomial Char4 has a multiple root. Since deg Chary = n and char(F') = 0,
Char’, is a nonzero polynomial of degree n — 1, and hence, by Corollary 7.42, Char4 has a multiple
root if and only if res(Char 4, Char’y) = 0. To summarize, every n-by-n matrix A over F' has at least
one of the following properties:

Chary(A) =0 or res(Char 4, Char’y) = 0. (8.27)

Take any 1 <, j < n. As observed in Example 8.25, the (i, j)-th entry of the matrix Char4(A)
is a polynomial in the n? variables a1, ..., an, with integer coefficients; denote this polynomial by
pij(@i1, ..., any). Similarly, the expression res(Char 4, Char'y) is also a polynomial in aj1, ..., any
with integer coefficients, which we denote by ¢(ai1, ..., an,). For example, if n = 2, then

q(ai1, a12, a1, a2) = res(t2 — (@11 + ax2)t + aj1az — ajgag, 2t — ay; — aze)

a11a22 — 12021 —a11 — 422 0
det —a11 — a2 2 —a11 — a2
1 0 2

2 2
= —aj; + 2a11a99 — 4daiaa91 — ayg.

From (8.27), we know that
pij(ait,...,ann) =0 or gq(air,...,ann) =0 for all aty, ..., an, € F.

Sine F' is infinite, Corollary 7.48 implies that we have p;; = 0 or ¢ = 0 as polynomials. Since q # 0
(because there exist matrices with n distinct eigenvalues), we conclude that p;; = 0. But then
pij(ai1,...,ann) = 0 for all a1y, ..., ann € F, regardless of whether the matrix A is diagonalizable.
Since this is true for all 7, j, we conclude that Chars(A) = 0 for all A € M, (F).

Third, we consider the general case. The above argument carried out over any algebraically closed
field of characteristic 0, e.g., over C, shows that the integer polynomial p;; representing the (7, j)-th
entry of Char4(A) for A as in (8.26) is, in fact, the zero polynomial. But then p;;j(ai1,...,ann) =0
for all ajq, ..., any € F regardless of the choice of the field F. Thus, Char4(A) = 0 for all n-by-n
matrices A over any field F, as desired.?* |

24y fact, this argument shows that the Cayley—Hamilton theorem holds not only over every field, but over every
commutative ring as well.
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8.E. Generalized eigenspaces

Definition 8.28. Let V be a finite-dimensional vector space over a field F' and let ¢ € Lin(V, V).
Let X € Spec(y) and suppose that the multiplicity of A as a root of Char,, is m. Define

G(A) = ker((p — Nidy)™).
We call G()\) the generalized eigenspace of ¢ corresponding to the eigenvalue .

Exercise 8.29. Let V' be a finite-dimensional F-vector space and let ¢ € Lin(V, V). Show that for
each A € Spec(yp), we have E(X) € G(A).

Exercise 8.30. Let V be a finite-dimensional F-vector space and let ¢ € Lin(V, V). Show that for
each \ € Spec(yp), the space G(\) is g-invariant.

Theorem 8.31 (Generalized eigenspace decomposition). Let V' be a finite-dimensional

vector space over an algebraically closed field F' and let ¢ € Lin(V, V). Let A1, ..., \x be the distinct
eigenvalues of ¢ and let G1, ..., Gy be the corresponding generalized eigenspaces. Then every
vector x € V' can be expressed uniquely as x = x1 + - - - + x, where x1 € Gy, ..., xp € Gp.

PRrRoOOF. Let n:= dim V. For brevity, let p := Char,. For each 1 <7 < k, let m; be the multiplicity
of \; as a root of p and define

pi = (t—X\)™.
Thus, we can write
P = (S (=A™ (= M) = (<L)
Also, let g; := p/p;; in other words,
¢ = (=1)"p1---pi-1pi+1- " Dk-
Note that, by definition, G; = ker(p;(p)).
Claim. For each 1 <i < k, im(¢;(p)) < G;.

Proof. Take any y € V. We need to show that ¢;(¢)(y) € Gy, i.e., pi(¢)qi(v)(y) = 0. But p;q; = p,
and p(¢) = 0 by the Cayley-Hamilton theorem, so p;(¢)qi(v)(y) = p(¢)(y) = 0, as claimed. —

Since Aj, ..., Ay are pairwise distinct, we have ged(qy, ..., qx) = 1. Therefore, by Exercise 7.19,
there exist polynomials uy, ..., ug € F[t] such that qyuj + - - - + qxup = 1. Take any x € V. We have
v = idy(z) = (qui+ -+ que) (@) (@) = qal)ui(p)(x) + - + a(p)ur(p) (@),

(R —_—
eim(q1(v)) € G1 eim(qx(¢)) € Gk
as desired. It remains to prove uniqueness. To that end, it is enough to show that if x1 +---+x =0
and z1 € Gy, ..., 2 € G, then 1 = --- = xp, = 0 (why?). Consider any 1 < i < k. Since z; € Gy,

we have p;(¢)(z;) = 0. On the other hand, for each j # 4, the polynomial p; divides ¢;, and hence
¢i(p)(x;) = 0. Since ged(ps, ¢i) = 1, there are polynomials u, v € F[t] such that up; +vg; = 1. Then

zi = idy(zi) = (upi +vg;)(p) (i) = u + v(p)gi(e)(@i)
= v(9)qi() ()
[since ¢;(¢)(x;) =0 for j #i] = v(p)a(p)(x1+- +ax) = 0,
and we are done. |

Exercise 8.32. In the setting of Theorem 8.31, let m; be the multiplicity of A; as a root of Char,,.
Show that dim G; = m;. Hint: What is the characteristic polynomial of ¢|q,?

Exercise 8.33. Let V be a finite-dimensional vector space over an algebraically closed field F' and
let ¢ € Lin(V, V). Show that for each A\ € Spec(p), we have

GA\) ={zeV : (p—Aidy)™(x) = 0 for some m € N}.
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Suppose that we are in the setting of Theorem 8.31; i.e., let ¢ € Lin(V, V') be a linear transformation
of a finite-dimensional vector space V over an algebraically closed field F', let A, ..., Ax be the
distinct eigenvalues of ¢, and let Gy, ..., Gi be the corresponding generalized eigenspaces. For
each 1 < i <k, let m; be the multiplicity of \; as a root of Char, (by Exercise 8.32, m; = dim G;).
Set ¢ = ¢|g,, S0 ¢; is a linear transformation of G;. Thanks to Theorem 8.31, to understand the

structure of ¢, we just need to understand the transformations 1, ..., @i individually. Indeed, if
we know @1, ..., @k, then, for each x € V, the value ¢(x) is determined uniquely as follows: If we
write © = x1 + -+ + x, with 21 € G1, ..., x € Gy, then p(z) = p1(x1) + - - + pr(Tk).

Another way to phrase this is in terms of matrices. For each 1 < ¢ < k, pick an arbitrary ordered
basis X; for GG;. Set X := X7 --- "X}, where " indicates concatenation of finite tuples.25 Then,
according to Theorem 8.31, X is an ordered basis for V. If we set A; := [p;]x, x, to be the matrix
representing ¢; with respect to the basis Xj, then the matrix A := [¢]x x representing ¢ in the
basis X has the following “block-diagonal” form:

Ay

Ap
A= . (the entries outside of the diagonal “blocks” are zero).

Ay

Thus, if we manage to choose the bases X1, ..., X so that the corresponding matrices Ay, ..., A
have a particularly “simple” structure, then we would obtain a “simple” matrix A representing the
transformation ¢.

It remains to investigate the structure of the transformations ¢;, 1 < i < k. It is actually more
natural to look at the transformation ¢; = ¢; — \; id instead. Of course, if we know v;, then we know
v; as well, since for all z € G;, p;(x) = ¥;(z) + \jz. By the definition of G;, the transformation 1);
has the property that ¢;"* = 0. Such transformations are called nilpotent, and in the next subsection
we shall see that their behavior can be analyzed very precisely.

8.F. Structure of nilpotent transformations

Definition 8.34. Let V' be a vector space over a field F. A linear transformation ¢ € Lin(V, V) is
called nilpotent is ™ = 0 for some m € N. The least such m is called the nilpotency degree of ¢
and is denoted by ndeg(y).

Let V be a finite-dimensional F-vector space and let ¢ € Lin(V, V') be nilpotent. The structure
of ¢ can be understood particularly well using a special type of basis for V', called a chain basis. A
chain basis for ¢ is a basis X € V for V such that:

e for all z € X either p(x) € X or ¢(x) = 0; and
e for each z € X, there is at most one element y € X with p(y) = «.

The name “chain basis” is motivated by the following considerations. Let X be a chain basis for ¢.
If we represent each element of X by a dot and put an arrow pointing from the dot corresponding
to each element = € X to the dot corresponding to ¢(x) (whenever ¢(z) # 0), then the resulting
directed graph will look like a collection of disjoint “chains”:

25The concatenation of two sequences X = (z1,...,2s) and Y = (y1,...,y:) is the sequence

XY = (21,.. ., Ts, Y15 -+, Yt)-
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Figure 6. A chain basis represented by a directed graph (the rightmost elements
are mapped to 0 by ¢).

Indeed, since ¢ is nilpotent, if we follow the arrows starting from any dot, we must eventually reach
a “dead end” (corresponding to an element of X that is sent to 0 by ¢). On the other hand, starting
from any of the “dead ends,” we can follow the arrows backwards and build the corresponding
“chain” (when we try to follow the arrows backwards, there are no “forks in the road,” because for
each x € X, there is at most one arrow pointing to x).

If X is a chain basis for ¢, then the elements of X can be put in a sequence (z1,...,z,) so that
for each 1 < i < n, we have either p(z;) = z;41 or ¢(x;) = 0 (see Fig. 6). With respect to such an
ordered chain basis, the matrix A that represents ¢ is “block-diagonal,” where the blocks Bi, ..
By, correspond to the “chains,” and each individual block B; looks like this:

o .

1

B; = 0

*

)

L 1 O_

i.e., the only nonzero entries of B; are located immediately below the main diagonal and are all
equal to 1.%6

Theorem 8.35. Let V' be a finite-dimensional vector space over a field F' and let ¢ € Lin(V, V') be
nilpotent. Then there is a chain basis X € V for .

PROOF. Before proceeding with the proof, we need some terminology. Let W < V be a subspace.

A tuple (z1,...,x;) € V¥ is independent over W if for all ay, ..., a € F, we have
arr1+ - t+aprpeW <<= a1 =---=a,=0.
A tuple X = (x1,...,xk) is a basis over W is it is independent over W and

Span({x1,...,zx} W) =V.

Thus, “independent” means the same as “independent over {0}” and a basis is the same as a basis
over {0}. Notice that a tuple X is a basis over W if and only if for every ordered basis Y for W,
the concatenation XY is an ordered basis for V.

Exercise 8.36. Show that every tuple X = (z1,...,zy) that is independent over a subspace W < V
can be extended to a basis over W.

261t is common to order the elements of a chain basis differently, resulting in blocks with 1s immediately above
the main diagonal. The ordering used here seems more natural to me personally; of course, there is no substantial
difference between the two conventions.
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To establish Theorem 8.35, we shall prove the following stronger claim using induction on dim V:

Let m := ndeg(y) and suppose that X = (z1,...,x;) € V¥ is a tuple independent over ker(¢™™1).
Then X can be extended to a chain basis for .

The base case dim V' = 0 is trivial, so assume that dim V' > 1. In this case idy # 0, and hence
m > 1. Saying that m is the nilpotency degree of ¢ means that ker(¢™) = V and ker(¢™ ') € V.
The restriction of ¢ to ker(¢™ ') is a nilpotent transformation of ker(™~!) of nilpotency degree
m — 1. Our plan is to apply the inductive hypothesis to this transformation.

To begin with, we use Exercise 8.36 to extend X to a basis X’ over ker(¢p™~1). Since any chain
basis that extends X' also extends X, we will, without loss of generality, assume that X = X'.

Claim. The tuple Y := (o(z1),...,¢(zt)) is independent over ker(o™~?).

Proof. Take any ay, ..., ax € F such that

arp(z1) + -+ app(zy) € ker(e™ ).

Since
arp(r1) + -+ app(ag) = ¢ (arxy + -+ + apxg) ,
we conclude that
a1z, + - + apzy € ker(@mt),
But the tuple X is independent over ker(¢™~!), and hence a; = --- = aj, = 0, as desired. —
Since ker(¢™) = V, we have im(y) < ker(¢™~!). Thus, the elements of Y belong to ker(¢™~ 1),
and we may apply the inductive hypothesis with ker(¢™1) in place of V, g0|ker(wm71) in place of ¢,

and Y in place of X. This shows that we can extend Y to a chain basis Z for the restriction of ¢ to
ker(™~1). We now claim that X" Z is a desired chain basis for ¢.

Claim. The tuple X~ Z is independent.
Proof. Write Z = (z1,...,2¢) and suppose that

a1z + -+ agrp + bz + -+ beze = 0.

Then
a1x1 + -+ apxy = —bizg — - —byzp € ker(gpm_l).
Since X is independent over ker(¢™ 1), we conclude that a; = --- = a; = 0. But then
biz1+ -+ bpzg = 0,
and since Z is independent, by = --- = by = 0 as well. —

Since Z is a basis for ker(o™ 1), while X is a basis over ker(¢™ 1), the tuple X~ Z is spanning.
Hence, X~ Z is a basis. It remains to verify that it is a chain basis, which is left as an exercise. W

8.G. The Jordan normal form

Now it’s time to put the results of this section together. Let V' be a finite-dimensional vector space
over an algebraically closed field F' and let ¢ € Lin(V, V). Let A1, ..., A\x be the distinct eigenvalues
of ¢ and let GGy, ..., Gj be the corresponding generalized eigenspaces. For each 1 < ¢ < k, set
vi = ¢|g, and ¥; == @; — \;id. By construction, 1; is a nilpotent transformation of G;. Hence, by
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Figure 7. A cartoon of the proof of Theorem 8.35.

Theorem 8.35, we can find a chain basis X; for 1;. We can view X; as an ordered basis such that
the matrix [1¢;]x, x, is “block-diagonal,” with blocks of the form

"o -
10
1 0
Since ¢; = 1; + A;id, the matrix A; := [¢;]x, x, is also “block-diagonal,” with blocks of the form
By _
1N
1 N
i I
Let X := X;7---"X}. From Theorem 8.31, we know that the matrix A := [p]x x is simply the
“block-diagonal” matrix assembled from Aj, ..., A;x. Combining all of this information, we conclude
that the matrix A is “block-diagonal,” with blocks of the form
B _
1 A
1 A 7 (8.37)

where A € Spec(p). Such a matrix is called a Jordan normal form of ¢. Thus, we have established
the following fundamental result:

Theorem 8.38 (Jordan). Let V' be a finite-dimensional vector space over an algebraically closed
field F and let ¢ € Lin(V, V). Then ¢ has a Jordan normal form; i.e., there is a basis X for V such
that [¢]x x is a “block-diagonal” matrix with blocks of the form (8.37), where X\ € Spec(¢p). [

Exercise 8.39. Let V be a finite-dimensional vector space over an algebraically closed field F' and
let ¢ € Lin(V, V). Show that the Jordan normal form of ¢ is unique up to reordering of the blocks.
Hint: Analyze our proof of Theorem 8.38.

Theorem 8.38, combined with the result of Exercise 8.39, gives a very satisfying answer to the
classification problem: Two linear transformations ¢, 1 € Lin(V, V') of a finite-dimensional vector
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space over an algebraically closed field are conjugate if and only if their Jordan normal forms are
the same up to reordering of the blocks.

Example 8.40. Let F' be an algebraically closed field and suppose that V is a 2-dimensional
F-vector space. What can the Jordan normal form of a transformation ¢ € Lin(V, V') look like? It
must be “block-diagonal,” so there are two possibilities:

e one block of size 2; or

e two blocks of size 1.

In the first case, the matrix has the form

BN

where A is the unique eigenvalue of ¢. In the second case, the matrix is

At 0
0 X |’
and Spec(y) = {A1, A2} (it is still possible that Ay = A2). When dim V' = 3, there are three options:
A0 0 A0 0 A0 0
1 X 0|, 1 X 0 [, and 0 X O
0 1 X 0 0 X 0 0 Mg

Extra exercises for Section 8

Exercise 8.41. Let F be a field and let V be an F-vector space. Let ¢, ¢: V — V be linear
functions. Suppose that ¢ and ¥ commute, i.e., that p 01 = 1o . Let A € Spec(p) and let W < V
be the corresponding eigenspace.

(a) Show that the space W is ¢-invariant.
(b) Conclude that if the field F' is algebraically closed and the space V is finite-dimensional,
then W contains an eigenvector of v; in particular, ¢ and ¥ have a common eigenvector.

Exercise 8.42. In this exercise we prove the following result of Sylvester:

Theorem 8.43 (Sylvester). Let F' be an algebraically closed field and let A € Myxn(F), B €

Mypsm(F). If A and B have no common eigenvalues, then for each C' € My, x,(F'), the equation
AX - XB=C

has a unique solution X € M xm(F).

Let V := My xm(F') and define linear functions ¢4, pp: V — V by
wA(X)=AX and vp(X) = XB.
(a) Show that the functions ¢4 and ¢p commute with each other.
(b) Let A € Spec(pa — ¢p). Show that A = p — v for some p € Spec(pa) and v € Spec(¢p).
Hint: Apply the result of Exercise 8.41 with ¢4 — ¢ in place of ¢ and ¢4 in place of .
(¢) Show that Spec(pa) = Spec(A) and Spec(¢p) = Spec(B). Hint: To show that Spec(pp) =
Spec(B), use the fact that Spec(B) = Spec(BT) (see Exercise 8.14).
(d) Conclude that all eigenvalues of ¢4 — ¢ are nonzero and finish the proof of Theorem 8.43.

Exercise 8.44. Let F' be an algebraically closed field and let A € M,,«,,(F'). Use Theorem 8.38 to
show that the matrices A and AT are conjugate.
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